Inferential Models

Reasoning with Uncertainty

Häftad, Engelska, 2020

Av Ryan Martin, Chuanhai Liu

869 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Finns i fler format (1)


A New Approach to Sound Statistical ReasoningInferential Models: Reasoning with Uncertainty introduces the authors’ recently developed approach to inference: the inferential model (IM) framework. This logical framework for exact probabilistic inference does not require the user to input prior information. The authors show how an IM produces meaningful prior-free probabilistic inference at a high level.The book covers the foundational motivations for this new IM approach, the basic theory behind its calibration properties, a number of important applications, and new directions for research. It discusses alternative, meaningful probabilistic interpretations of some common inferential summaries, such as p-values. It also constructs posterior probabilistic inferential summaries without a prior and Bayes’ formula and offers insight on the interesting and challenging problems of conditional and marginal inference. This book delves into statistical inference at a foundational level, addressing what the goals of statistical inference should be. It explores a new way of thinking compared to existing schools of thought on statistical inference and encourages you to think carefully about the correct approach to scientific inference.

Produktinformation

  • Utgivningsdatum2020-12-18
  • Mått156 x 234 x undefined mm
  • Vikt360 g
  • FormatHäftad
  • SpråkEngelska
  • SerieChapman & Hall/CRC Monographs on Statistics and Applied Probability
  • Antal sidor256
  • FörlagTaylor & Francis Ltd
  • ISBN9780367737801