Incropera's Principles of Heat and Mass Transfer, Global Edition
Häftad, Engelska, 2017
Av Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine, Frank P. (Purdue University) Incropera, David P. (Purdue University) DeWitt, University of Connecticut) Bergman, Theodore L. (Department of Mechanical Engineering, Los Angeles) Lavine, Adrienne S. (Mechanical and Aerospace Engineering Department, University of California, David P. Dewitt
919 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Incropera's Fundamentals of Heat and Mass Transfer has been the gold standard of heat transfer pedagogy for many decades, with a commitment to continuous improvement by four authors’ with more than 150 years of combined experience in heat transfer education, research and practice. Applying the rigorous and systematic problem-solving methodology that this text pioneered an abundance of examples and problems reveal the richness and beauty of the discipline. This edition makes heat and mass transfer more approachable by giving additional emphasis to fundamental concepts, while highlighting the relevance of two of today’s most critical issues: energy and the environment.
Produktinformation
- Utgivningsdatum2017-10-06
 - Mått10 x 10 x 10 mm
 - Vikt1 814 g
 - FormatHäftad
 - SpråkEngelska
 - Antal sidor1 008
 - Upplaga8
 - FörlagJohn Wiley & Sons Inc
 - ISBN9781119382911
 
Tillhör följande kategorier
- Symbols xixChapter 1 Introduction 11.1 What and How? 21.2 Physical Origins and Rate Equations 31.2.1 Conduction 31.2.2 Convection 61.2.3 Radiation 81.2.4 The Thermal Resistance Concept 121.3 Relationship to Thermodynamics 121.3.1 Relationship to the First Law of Thermodynamics (Conservation of Energy) 131.3.2 Relationship to the Second Law of Thermodynamics and the Efficiency of Heat Engines 281.4 Units and Dimensions 331.5 Analysis of Heat Transfer Problems: Methodology 351.6 Relevance of Heat Transfer 381.7 Summary 42References 45Problems 45Chapter 2 Introduction to Conduction 592.1 The Conduction Rate Equation 602.2 The Thermal Properties of Matter 622.2.1 Thermal Conductivity 632.2.2 Other Relevant Properties 702.3 The Heat Diffusion Equation 742.4 Boundary and Initial Conditions 822.5 Summary 86References 87Problems 87Chapter 3 One-Dimensional, Steady-State Conduction 993.1 The Plane Wall 1003.1.1 Temperature Distribution 1003.1.2 Thermal Resistance 1023.1.3 The Composite Wall 1033.1.4 Contact Resistance 1053.1.5 Porous Media 1073.2 An Alternative Conduction Analysis 1213.3 Radial Systems 1253.3.1 The Cylinder 1253.3.2 The Sphere 1303.4 Summary of One-Dimensional Conduction Results 1313.5 Conduction with Thermal Energy Generation 1313.5.1 The Plane Wall 1323.5.2 Radial Systems 1383.5.3 Tabulated Solutions 1393.5.4 Application of Resistance Concepts 1393.6 Heat Transfer from Extended Surfaces 1433.6.1 A General Conduction Analysis 1453.6.2 Fins of Uniform Cross-Sectional Area 1473.6.3 Fin Performance Parameters 1533.6.4 Fins of Nonuniform Cross-Sectional Area 1563.6.5 Overall Surface Efficiency 1593.7 Other Applications of One-Dimensional, Steady-State Conduction 1633.7.1 The Bioheat Equation 1633.7.2 Thermoelectric Power Generation 1673.7.3 Nanoscale Conduction 1753.8 Summary 179References 181Problems 182Chapter 4 Two-Dimensional, Steady-State Conduction 2094.1 General Considerations and Solution Techniques 2104.2 The Method of Separation of Variables 2114.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate 2154.4 Finite-Difference Equations 2214.4.1 The Nodal Network 2214.4.2 Finite-Difference Form of the Heat Equation: No Generation and Constant Properties 2224.4.3 Finite-Difference Form of the Heat Equation: The Energy Balance Method 2234.5 Solving the Finite-Difference Equations 2304.5.1 Formulation as a Matrix Equation 2304.5.2 Verifying the Accuracy of the Solution 2314.6 Summary 236References 237Problems 2374S.1 The Graphical Method W-14S.1.1 Methodology of Constructing a Flux Plot W-14S.1.2 Determination of the Heat Transfer Rate W-24S.1.3 The Conduction Shape Factor W-34S.2 The Gauss-Seidel Method: Example of Usage W-5References W-10Problems W-10Chapter 5 Transient Conduction 2535.1 The Lumped Capacitance Method 2545.2 Validity of the Lumped Capacitance Method 2575.3 General Lumped Capacitance Analysis 2615.3.1 Radiation Only 2625.3.2 Negligible Radiation 2625.3.3 Convection Only with Variable Convection Coefficient 2635.3.4 Additional Considerations 2635.4 Spatial Effects 2725.5 The Plane Wall with Convection 2735.5.1 Exact Solution 2745.5.2 Approximate Solution 2745.5.3 Total Energy Transfer: Approximate Solution 2765.5.4 Additional Considerations 2765.6 Radial Systems with Convection 2775.6.1 Exact Solutions 2775.6.2 Approximate Solutions 2785.6.3 Total Energy Transfer: Approximate Solutions 2785.6.4 Additional Considerations 2795.7 The Semi-Infinite Solid 2845.8 Objects with Constant Surface Temperatures or Surface Heat Fluxes 2915.8.1 Constant Temperature Boundary Conditions 2915.8.2 Constant Heat Flux Boundary Conditions 2935.8.3 Approximate Solutions 2945.9 Periodic Heating 3015.10 Finite-Difference Methods 3045.10.1 Discretization of the Heat Equation: The Explicit Method 3045.10.2 Discretization of the Heat Equation: The Implicit Method 3115.11 Summary 318References 319Problems 3195S.1 Graphical Representation of One-Dimensional, Transient Conduction in the Plane Wall, Long Cylinder, and Sphere W-125S.2 Analytical Solutions of Multidimensional Effects W-16References W-22Problems W-22Chapter 6 Introduction to Convection 3436.1 The Convection Boundary Layers 3446.1.1 The Velocity Boundary Layer 3446.1.2 The Thermal Boundary Layer 3456.1.3 The Concentration Boundary Layer 3476.1.4 Significance of the Boundary Layers 3486.2 Local and Average Convection Coefficients 3486.2.1 Heat Transfer 3486.2.2 Mass Transfer 3496.3 Laminar and Turbulent Flow 3556.3.1 Laminar and Turbulent Velocity Boundary Layers 3556.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers 3576.4 The Boundary Layer Equations 3606.4.1 Boundary Layer Equations for Laminar Flow 3616.4.2 Compressible Flow 3646.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations 3646.5.1 Boundary Layer Similarity Parameters 3656.5.2 Dependent Dimensionless Parameters 3656.6 Physical Interpretation of the Dimensionless Parameters 3746.7 Boundary Layer Analogies 3766.7.1 The Heat and Mass Transfer Analogy 3776.7.2 Evaporative Cooling 3806.7.3 The Reynolds Analogy 3836.8 Summary 384References 385Problems 3866S.1 Derivation of the Convection Transfer Equations W-256S.1.1 Conservation of Mass W-256S.1.2 Newton’s Second Law of Motion W-266S.1.3 Conservation of Energy W-296S.1.4 Conservation of Species W-32References W-36Problems W-36Chapter 7 External Flow 3997.1 The Empirical Method 4017.2 The Flat Plate in Parallel Flow 4027.2.1 Laminar Flow over an Isothermal Plate: A Similarity Solution 4037.2.2 Turbulent Flow over an Isothermal Plate 4097.2.3 Mixed Boundary Layer Conditions 4107.2.4 Unheated Starting Length 4117.2.5 Flat Plates with Constant Heat Flux Conditions 4127.2.6 Limitations on Use of Convection Coefficients 4137.3 Methodology for a Convection Calculation 4137.4 The Cylinder in Cross Flow 4217.4.1 Flow Considerations 4217.4.2 Convection Heat and Mass Transfer 4237.5 The Sphere 4317.6 Flow Across Banks of Tubes 4347.7 Impinging Jets 4437.7.1 Hydrodynamic and Geometric Considerations 4437.7.2 Convection Heat and Mass Transfer 4447.8 Packed Beds 4487.9 Summary 449References 452Problems 452Chapter 8 Internal Flow 4758.1 Hydrodynamic Considerations 4768.1.1 Flow Conditions 4768.1.2 The Mean Velocity 4778.1.3 Velocity Profile in the Fully Developed Region 4788.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow 4808.2 Thermal Considerations 4818.2.1 The Mean Temperature 4828.2.2 Newton’s Law of Cooling 4838.2.3 Fully Developed Conditions 4838.3 The Energy Balance 4878.3.1 General Considerations 4878.3.2 Constant Surface Heat Flux 4888.3.3 Constant Surface Temperature 4918.4 Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations 4958.4.1 The Fully Developed Region 4958.4.2 The Entry Region 5008.4.3 Temperature-Dependent Properties 5028.5 Convection Correlations: Turbulent Flow in Circular Tubes 5028.6 Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus 5108.7 Heat Transfer Enhancement 5138.8 Forced Convection in Small Channels 5168.8.1 Microscale Convection in Gases (0.1 μm ≲ Dh ≲ 100 μm) 5168.8.2 Microscale Convection in Liquids 5178.8.3 Nanoscale Convection (Dh ≲ 100 nm) 5188.9 Convection Mass Transfer 5218.10 Summary 523References 526Problems 527Chapter 9 Free Convection 5479.1 Physical Considerations 5489.2 The Governing Equations for Laminar Boundary Layers 5509.3 Similarity Considerations 5529.4 Laminar Free Convection on a Vertical Surface 5539.5 The Effects of Turbulence 5569.6 Empirical Correlations: External Free Convection Flows 5589.6.1 The Vertical Plate 5599.6.2 Inclined and Horizontal Plates 5629.6.3 The Long Horizontal Cylinder 5679.6.4 Spheres 5719.7 Free Convection Within Parallel Plate Channels 5729.7.1 Vertical Channels 5739.7.2 Inclined Channels 5759.8 Empirical Correlations: Enclosures 5759.8.1 Rectangular Cavities 5759.8.2 Concentric Cylinders 5789.8.3 Concentric Spheres 5799.9 Combined Free and Forced Convection 5819.10 Convection Mass Transfer 5829.11 Summary 583References 584Problems 585Chapter 10 Boiling and Condensation 60310.1 Dimensionless Parameters in Boiling and Condensation 60410.2 Boiling Modes 60510.3 Pool Boiling 60610.3.1 The Boiling Curve 60610.3.2 Modes of Pool Boiling 60710.4 Pool Boiling Correlations 61010.4.1 Nucleate Pool Boiling 61010.4.2 Critical Heat Flux for Nucleate Pool Boiling 61210.4.3 Minimum Heat Flux 61310.4.4 Film Pool Boiling 61310.4.5 Parametric Effects on Pool Boiling 61410.5 Forced Convection Boiling 61910.5.1 External Forced Convection Boiling 62010.5.2 Two-Phase Flow 62010.5.3 Two-Phase Flow in Microchannels 62310.6 Condensation: Physical Mechanisms 62310.7 Laminar Film Condensation on a Vertical Plate 62510.8 Turbulent Film Condensation 62910.9 Film Condensation on Radial Systems 63410.10 Condensation in Horizontal Tubes 63910.11 Dropwise Condensation 64010.12 Summary 641References 641Problems 643Chapter 11 Heat Exchangers 65311.1 Heat Exchanger Types 65411.2 The Overall Heat Transfer Coefficient 65611.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference 65911.3.1 The Parallel-Flow Heat Exchanger 66011.3.2 The Counterflow Heat Exchanger 66211.3.3 Special Operating Conditions 66311.4 Heat Exchanger Analysis: The Effectiveness–NTU Method 67011.4.1 Definitions 67011.4.2 Effectiveness–NTU Relations 67111.5 Heat Exchanger Design and Performance Calculations 67811.6 Additional Considerations 68711.7 Summary 695References 696Problems 69611S.1 Log Mean Temperature Difference Method for Multipass and Cross-Flow Heat Exchangers W-4011S.2 Compact Heat Exchangers W-44References W-49Problems W-50Chapter 12 Radiation: Processes and Properties 71112.1 Fundamental Concepts 71212.2 Radiation Heat Fluxes 71512.3 Radiation Intensity 71712.3.1 Mathematical Definitions 71712.3.2 Radiation Intensity and Its Relation to Emission 71812.3.3 Relation to Irradiation 72312.3.4 Relation to Radiosity for an Opaque Surface 72512.3.5 Relation to the Net Radiative Flux for an Opaque Surface 72612.4 Blackbody Radiation 72612.4.1 The Planck Distribution 72712.4.2 Wien’s Displacement Law 72812.4.3 The Stefan–Boltzmann Law 72812.4.4 Band Emission 72912.5 Emission from Real Surfaces 73612.6 Absorption, Reflection, and Transmission by Real Surfaces 74512.6.1 Absorptivity 74612.6.2 Reflectivity 74712.6.3 Transmissivity 74912.6.4 Special Considerations 74912.7 Kirchhoff’s Law 75412.8 The Gray Surface 75612.9 Environmental Radiation 76212.9.1 Solar Radiation 76312.9.2 The Atmospheric Radiation Balance 76512.9.3 Terrestrial Solar Irradiation 76712.10 Summary 770References 774Problems 774Chapter 13 Radiation Exchange Between Surfaces 79713.1 The View Factor 79813.1.1 The View Factor Integral 79813.1.2 View Factor Relations 79913.2 Blackbody Radiation Exchange 80813.3 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure 81213.3.1 Net Radiation Exchange at a Surface 81313.3.2 Radiation Exchange Between Surfaces 81413.3.3 The Two-Surface Enclosure 82013.3.4 Two-Surface Enclosures in Series and Radiation Shields 82213.3.5 The Reradiating Surface 82413.4 Multimode Heat Transfer 82913.5 Implications of the Simplifying Assumptions 83213.6 Radiation Exchange with Participating Media 83213.6.1 Volumetric Absorption 83213.6.2 Gaseous Emission and Absorption 83313.7 Summary 837References 838Problems 839Chapter 14 Diffusion Mass Transfer 86314.1 Physical Origins and Rate Equations 86414.1.1 Physical Origins 86414.1.2 Mixture Composition 86514.1.3 Fick’s Law of Diffusion 86614.1.4 Mass Diffusivity 86714.2 Mass Transfer in Nonstationary Media 86914.2.1 Absolute and Diffusive Species Fluxes 86914.2.2 Evaporation in a Column 87214.3 The Stationary Medium Approximation 87714.4 Conservation of Species for a Stationary Medium 87714.4.1 Conservation of Species for a Control Volume 87814.4.2 The Mass Diffusion Equation 87814.4.3 Stationary Media with Specified Surface Concentrations 88014.5 Boundary Conditions and Discontinuous Concentrations at Interfaces 88414.5.1 Evaporation and Sublimation 88514.5.2 Solubility of Gases in Liquids and Solids 88514.5.3 Catalytic Surface Reactions 89014.6 Mass Diffusion with Homogeneous Chemical Reactions 89214.7 Transient Diffusion 89514.8 Summary 901References 902Problems 902Appendix A Thermophysical Properties of Matter 911Appendix B Mathematical Relations and Functions 943Appendix C Thermal Conditions Associated with Uniform Energy Generation in One-Dimensional, Steady-State Systems 949Appendix D The Gauss–Seidel Method 955Appendix E The Convection Transfer Equations 957E.1 Conservation of Mass 958E.2 Newton’s Second Law of Motion 958E.3 Conservation of Energy 959E.4 Conservation of Species 960Appendix F Boundary Layer Equations for Turbulent Flow 961Appendix G An Integral Laminar Boundary Layer Solution for Parallel Flow over a Flat Plate 965Index 969