Imaginary Schur-Weyl Duality
Häftad, Engelska, 2017
1 109 kr
Tillfälligt slut
The authors study imaginary representations of the Khovanov-Lauda-Rouquier algebras of affine Lie type. Irreducible modules for such algebras arise as simple heads of standard modules. In order to define standard modules one needs to have a cuspidal system for a fixed convex preorder. A cuspidal system consists of irreducible cuspidal modules--one for each real positive root for the corresponding affine root system ${\tt X}_l^{(1)}$, as well as irreducible imaginary modules--one for each $l$-multiplication. The authors study imaginary modules by means of ``imaginary Schur-Weyl duality'' and introduce an imaginary analogue of tensor space and the imaginary Schur algebra. They construct a projective generator for the imaginary Schur algebra, which yields a Morita equivalence between the imaginary and the classical Schur algebra, and construct imaginary analogues of Gelfand-Graev representations, Ringel duality and the Jacobi-Trudy formula.
Produktinformation
- Utgivningsdatum2017-01-01
- Mått178 x 254 x undefined mm
- Vikt204 g
- FormatHäftad
- SpråkEngelska
- SerieMemoirs of the American Mathematical Society
- FörlagAmerican Mathematical Society
- ISBN9781470422493