Del 1335

Hyperresolutions cubiques et descente cohomologique

Häftad, Franska, 1988

Av Francisco Guillen, Vincente Navarro Aznar, Pedro Pascual-Gainza, Fernando Puerta

289 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

This monograph establishes a general context for the cohomological use of Hironaka's theorem on the resolution of singularities. It presents the theory of cubical hyperresolutions, and this yields the cohomological properties of general algebraic varieties, following Grothendieck's general ideas on descent as formulated by Deligne in his method for simplicial cohomological descent. These hyperrésolutions are applied in problems concerning possibly singular varieties: the monodromy of a holomorphic function defined on a complex analytic space, the De Rham cohmomology of varieties over a field of zero characteristic, Hodge-Deligne theory and the generalization of Kodaira-Akizuki-Nakano's vanishing theorem to singular algebraic varieties. As a variation of the same ideas, an application of cubical quasi-projective hyperresolutions to algebraic K-theory is given.

Produktinformation

  • Utgivningsdatum1988-07-27
  • Mått155 x 235 x 12 mm
  • Vikt330 g
  • FormatHäftad
  • SpråkFranska
  • SerieLecture Notes in Mathematics
  • Antal sidor192
  • Upplaga1988
  • FörlagSpringer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • ISBN9783540500230

Tillhör följande kategorier