Del 1505 - Lecture Notes in Mathematics
Hyperbolic Cauchy Problem
Häftad, Engelska, 1991
359 kr
Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.The approach to the Cauchy problem taken here by the authorsis based on theuse of Fourier integral operators with acomplex-valued phase function,     which is a time functionchosen suitably according to the geometry of the   multiplecharacteristics. The correctness of the Cauchy problem inthe  Gevrey classes for operators with hyperbolic principalpart is shown in the first part. In the second part, thecorrectness of the Cauchy problem for   effectively hyperbolicoperators is proved with a precise estimate of the   loss ofderivatives. This method can be applied to other                    (non)hyperbolic problems. The text is based on a course oflectures    given for graduate students but will be of interestto researchers          interested in hyperbolic partial differentialequations. In the latter part the reader is expected to befamiliar with some theory of                   pseudo-differential operators.
Produktinformation
- Utgivningsdatum1991-12-13
 - Mått155 x 235 x 11 mm
 - Vikt283 g
 - FormatHäftad
 - SpråkEngelska
 - SerieLecture Notes in Mathematics
 - Antal sidor172
 - Upplaga1991
 - FörlagSpringer-Verlag Berlin and Heidelberg GmbH & Co. KG
 - ISBN9783540550181