Homotopy Index and Partial Differential Equations
Häftad, Engelska, 1987
709 kr
Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.The homotopy index theory was developed by Charles Conley for two sided flows on compact spaces. The homotopy or Conley index, which provides an algebraic-topologi cal measure of an isolated invariant set, is defined to be the ho motopy type of the quotient space N /N , where is a certain 1 2 1 2 compact pair, called an index pair. Roughly speaking, N1 isolates the invariant set and N2 is the "exit ramp" of N . 1 It is shown that the index is independent of the choice of the in dex pair and is invariant under homotopic perturbations of the flow. Moreover, the homotopy index generalizes the Morse index of a nQnde generate critical point p with respect to a gradient flow on a com pact manifold. In fact if the Morse index of p is k, then the homo topy index of the invariant set {p} is Ik - the homotopy type of the pointed k-dimensional unit sphere.
Produktinformation
- Utgivningsdatum1987-08-24
- Mått170 x 244 x 13 mm
- Vikt395 g
- FormatHäftad
- SpråkEngelska
- SerieUniversitext
- Antal sidor208
- FörlagSpringer-Verlag Berlin and Heidelberg GmbH & Co. KG
- ISBN9783540180678