Hoppa till sidans huvudinnehåll

Homotopy Index and Partial Differential Equations

Häftad, Engelska, 1987

Av Krzysztof P. Rybakowski, Krzysztof Rybakowski

709 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

The homotopy index theory was developed by Charles Conley for two­ sided flows on compact spaces. The homotopy or Conley index, which provides an algebraic-topologi­ cal measure of an isolated invariant set, is defined to be the ho­ motopy type of the quotient space N /N , where is a certain 1 2 1 2 compact pair, called an index pair. Roughly speaking, N1 isolates the invariant set and N2 is the "exit ramp" of N . 1 It is shown that the index is independent of the choice of the in­ dex pair and is invariant under homotopic perturbations of the flow. Moreover, the homotopy index generalizes the Morse index of a nQnde­ generate critical point p with respect to a gradient flow on a com­ pact manifold. In fact if the Morse index of p is k, then the homo­ topy index of the invariant set {p} is Ik - the homotopy type of the pointed k-dimensional unit sphere.

Produktinformation

  • Utgivningsdatum1987-08-24
  • Mått170 x 244 x 13 mm
  • Vikt395 g
  • FormatHäftad
  • SpråkEngelska
  • SerieUniversitext
  • Antal sidor208
  • FörlagSpringer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • ISBN9783540180678