Del 51

High-Utility Pattern Mining

Theory, Algorithms and Applications

Inbunden, Engelska, 2019

Av Philippe Fournier-Viger, Jerry Chun-Wei Lin, Roger Nkambou, Bay Vo, Vincent S. Tseng

1 459 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

This book presents an overview of techniques for discovering high-utility patterns (patterns with a high importance) in data. It introduces the main types of high-utility patterns, as well as the theory and core algorithms for high-utility pattern mining, and describes recent advances, applications, open-source software, and research opportunities. It also discusses several types of discrete data, including customer transaction data and sequential data.The book consists of twelve chapters, seven of which are surveys presenting the main subfields of high-utility pattern mining, including itemset mining, sequential pattern mining, big data pattern mining, metaheuristic-based approaches, privacy-preserving pattern mining, and pattern visualization. The remaining five chapters describe key techniques and applications, such as discovering concise representations and regular patterns.

Produktinformation

  • Utgivningsdatum2019-01-31
  • Mått155 x 235 x undefined mm
  • FormatInbunden
  • SpråkEngelska
  • SerieStudies in Big Data
  • Antal sidor337
  • FörlagSpringer Nature Switzerland AG
  • ISBN9783030049201

Tillhör följande kategorier