Handbook of Hydrogen Storage
New Materials for Future Energy Storage
Inbunden, Engelska, 2010
Av Michael Hirscher, Ge) Hirscher, Michael (Max-Planck-Institut fur Metallforschung, Stuttgart
2 979 kr
Produktinformation
- Utgivningsdatum2010-03-24
- Mått178 x 246 x 28 mm
- Vikt703 g
- FormatInbunden
- SpråkEngelska
- Antal sidor373
- FörlagWiley-VCH Verlag GmbH
- MedarbetareHirose,Katsuhiko
- ISBN9783527322732
Tillhör följande kategorier
Michael Hirscher is group leader at the Max Planck Institute for Metals Research, Stuttgart, Germany. He studied physics at the University of Stuttgart, Germany and at the Oregon State University, Corvallis, USA, receiving a Master?s degree, a Diploma, and Ph.D. degree in 1982, 1984, and 1987, respectively. For his achievements he was awarded the Otto Hahn Medal of the Max Planck Society in 1988. Prior to taking his position in Stuttgart, he spent a post-doctoral fellowship at the University of Pennsylvania, Philadelphia, USA. He is a pioneer in the area of physisorption of hydrogen, studying the most advanced materials and revealing the limitations of carbon nanotubes. His current research interests focus on nanoporous and nanoscale materials for hydrogen storage.
- Foreword vPreface xvList of Contributors xix1 Storage of Hydrogen in the Pure Form 1Manfred Klell1.1 Introduction 11.2 Thermodynamic State and Properties 11.2.1 Variables of State 21.2.2 T–s-Diagram 41.2.2.1 Joule–Thomson Coefficient 51.2.3 Properties 51.3 Gaseous Storage 81.3.1 Compression and Expansion 101.3.2 Tank Systems 121.3.3 High Pressure Infrastructure 131.4 Liquid Storage 151.4.1 Liquefaction 151.4.2 Thermodynamic Analysis 171.4.2.1 Pressure Build-Up 211.4.2.2 Boil-Off 231.4.2.3 Cooling and Filling 241.4.2.4 Back-Gas 271.4.3 Tank Systems 281.4.4 Distribution Facilities 301.5 Hybrid Storage 301.5.1 Supercritical Storage 311.5.2 Hydrogen Slush 321.6 Comparison of Energy Densities 321.7 Conclusion 35References 362 Physisorption in Porous Materials 39Barbara Panella and Michael Hirscher2.1 Introduction 392.2 Carbon Materials 442.3 Organic Polymers 482.4 Zeolites 502.5 Coordination Polymers 512.6 Conclusions 58References 593 Clathrate Hydrates 63Alireza Shariati, Sona Raeissi, and Cor J. Peters3.1 Introduction 633.2 Clathrate Hydrate Structures 643.3 Hydrogen Clathrate Hydrate 663.4 Kinetic Aspects of Hydrogen Clathrate Hydrate 733.5 Modeling of Hydrogen Clathrate Hydrates 743.6 Future of Hydrogen Storage 76References 774 Metal Hydrides 81Jacques Huot4.1 Introduction 814.2 Elemental Hydrides 824.2.1 Ionic or Saline Hydrides 824.2.2 Covalent Hydrides 824.2.3 Metallic Hydrides 834.3 Thermodynamics of Metal Hydrides 834.3.1 Introduction 834.3.2 Low Concentration 854.3.3 High Concentration 864.4 Intermetallic Compounds 884.4.1 Thermodynamics 884.4.1.1 Miedema.s Model 894.4.1.2 Semi-Empirical Band Structure Model 914.4.2 Crystal Structure 924.4.3 Electronic Structure 944.5 Practical Considerations 944.5.1 Synthesis 954.5.2 Activation 954.5.3 Hysteresis 964.5.4 Plateau Slope 974.5.5 Reversible Capacity 984.5.6 Hydrogenation Kinetics 984.5.7 Cycle Life 994.5.8 Decrepitation 994.6 Metal Hydrides Systems 1004.6.1 AB5 1004.6.2 TiFe 1014.6.3 AB2 Laves Phases 1024.6.4 BCC Solid Solution 1034.7 Nanocrystalline Mg and Mg-Based Alloys 1044.7.1 Hydrogen Sorption Kinetics 1054.7.2 Reduction of the Heat of Formation 1074.7.3 Severe Plastic Deformation Techniques 1084.8 Conclusion 1094.8.1 Alloys Development 1094.8.2 Synthesis 1104.8.3 System Engineering 110References 1105 Complex Hydrides 117Claudia Weidenthaler and Michael Felderhoff5.1 Introduction 1175.2 Complex Borohydrides 1185.2.1 Introduction 1185.2.2 Stability of Metal Borohydrides 1185.2.3 Decomposition of Complex Borohydrides 1195.2.4 Lithium Borohydride, LiBH4 1205.2.4.1 Synthesis and Crystal Structure 1205.2.4.2 Decomposition of LiBH4 1205.2.5 Sodium Borohydride, NaBH4 1225.2.5.1 Synthesis and Crystal Structure 1225.2.5.2 Decomposition of NaBH4 1225.2.6 Potassium Borohydride KBH4 1225.2.7 Beryllium Borohydride Be(BH4)2 1235.2.8 Magnesium Borohydride Mg(BH4)2 1235.2.8.1 Synthesis and Crystal Structure 1235.2.8.2 Decomposition 1235.2.9 Calcium Borohydride Ca(BH4)2 1245.2.9.1 Synthesis and Crystal Structure 1245.2.9.2 Decomposition 1255.2.10 Aluminum Borohydride Al(BH4)3 1265.2.10.1 Synthesis and Crystal Structure 1265.2.10.2 Decomposition 1265.2.11 Zinc Borohydride Zn(BH4)2 1265.2.12 NaBH4 as a Hydrogen Storage Material in Solution 1265.2.12.1 Regeneration of Decomposed NaBH4 in Solution 1285.3 Complex Aluminum Hydrides 1285.3.1 Introduction 1285.3.2 LiAlH4 1305.3.2.1 Synthesis and Crystal Structure 1305.3.2.2 Decomposition of LiAlH4 1305.3.2.3 Role of Catalysts 1315.3.3 Li3AlH6 1325.3.3.1 Synthesis and Crystal Structure 1325.3.4 NaAlH4 1335.3.4.1 Synthesis and Crystal Structure 1335.3.4.2 Decomposition and Thermodynamics of NaAlH4 1335.3.4.3 Role of Catalysts 1355.3.5 Na3AlH6 1385.3.5.1 Synthesis and Crystal Structure 1385.3.6 KAlH4 1395.3.6.1 Synthesis and Crystal Structure 1395.3.6.2 Decomposition of KAlH4 1405.3.7 Mg(AlH4)2 1405.3.7.1 Synthesis and Crystal Structure 1405.3.7.2 Decompositon 1415.3.8 Ca(AlH4)2 1425.3.8.1 Synthesis and Crystal Structure 1425.3.8.2 Decomposition of Ca(AlH4)2 1435.3.9 Na2LiAlH6 1445.3.10 K2LiAlH6 1455.3.11 K2NaAlH6 1455.3.12 LiMg(AlH4)3, LiMgAlH6 1465.3.12.1 Synthesis and Crystal Structure 1465.3.12.2 Decomposition 1465.3.13 Sr2AlH7 1465.3.14 BaAlH5 1475.3.14.1 Synthesis and Crystal Structure 1475.4 Complex Transition Metal Hydrides 1485.4.1 Introduction 1485.4.2 Properties 1485.4.3 Synthesis 1495.4.4 Examples of Complex Transition Metal Hydrides 1505.5 Summary 150References 1516 Amides, Imides and Mixtures 159Takayuki Ichikawa6.1 Introduction 1596.2 Hydrogen Storage Properties of Amide and Imide Systems 1606.2.1 Li–N–H System 1606.2.2 Li–Mg–N-H Systems 1616.2.3 Other Metal–N–H Systems 1656.3 Structural Properties of Amide and Imide 1676.3.1 Lithium Amide and Imide 1686.3.2 Sodium Amide 1716.3.3 Magnesium Amide and Imide 1716.3.4 Other Amides and Imides 1726.4 Prospects of Amide and Imide Systems 1736.4.1 Kinetic Analysis and Improvement 1736.4.2 NH3 Amount Desorbed from Metal–N–H Systems 1766.4.3 Practical Properties 1776.5 Proposed Mechanism of the Hydrogen Storage Reaction in the Metal–N–H Systems 1786.5.1 Ammonia-Mediated Model for Hydrogen Desorption 1786.5.2 Direct Solid–Solid Reaction Model for Hydrogen Desorption 1806.5.3 Hydrogenating Mechanism of the Li-Mg-N-H System 1816.6 Summary 182References 1827 Tailoring Reaction Enthalpies of Hydrides 187Martin Dornheim7.1 Introduction 1877.2 Thermodynamic Limitations of Lightweight Hydrides 1897.3 Strategies to Alter the Reaction Enthalpies of Hydrides 1917.3.1 Thermodynamic Tuning of Single Phase Hydrides by Substitution on the Metal Site 1917.3.1.1 Lightweight Hydrides Forming Stable Compounds in the Dehydrogenated State 1937.3.1.2 Lightweight Hydrides with Positive Heat of Mixing in the Dehydrogenated State 1967.3.2 Thermodynamic Tuning of Single Phase Hydrides by Substitution on the Hydrogen Sites: Functional Anion Concept 1997.3.3 Multicomponent Hydride Systems 2037.3.3.1 Mixtures of Hydrides and Reactive Additives 2037.3.3.2 Mixed Hydrides/Reactive Hydride Composites 2077.4 Summary and Conclusion 210References 2118 Ammonia Borane and Related Compounds as Hydrogen Source Materials 215Florian Mertens, Gert Wolf, and Felix Baitalow8.1 Introduction 2158.2 Materials Description and Characterization 2168.3 Production 2198.4 Thermally Induced Decomposition of Pure Ammonia Borane 2218.4.1 Pyrolysis 2218.4.2 Decomposition in Organic Solvents 2278.4.3 Decomposition of Ammonia Borane in Heterogeneous Systems 2328.5 Hydrolysis of AB 2338.6 Substituted Ammonia Boranes 2358.7 Recycling Strategies 2388.7.1 Recycling from B-O-Containing Materials 2398.7.2 Recycling of BNHx-Waste Products 2408.8 Summary 243References 2449 Aluminum Hydride (Alane) 249Ragaiy Zidan 2499.1 Introduction 2499.2 Hydrogen Solubility and Diffusivity in Aluminum 2509.3 Formation and Thermodynamics of Different Phases of Alane 2529.4 Stability and Formation of Adduct Organo-Aluminum Hydride Compounds 2609.5 Phases and Structures of Aluminum Hydride 2669.6 Novel Attempts and Methods for Forming Alane Reversibly 2699.7 Conclusion 275References 27510 Nanoparticles and 3D Supported Nanomaterials 279Petra E. de Jongh and Philipp Adelhelm10.1 Introduction 27910.2 Particle Size Effects 28110.2.1 Thermodynamics 28110.2.2 Kinetics 28710.3 Non-Supported Clusters, Particles and Nanostructures 29010.3.1 Transition Metal Clusters 29110.3.2 Interstitial Hydrides, Focussing on Palladium Hydride 29310.3.3 Ionic Hydrides, Focussing on Magnesium Hydride 29610.4 Support Effects 30110.4.1 Stabilization of Small Particle Sizes 30210.4.2 Limiting Phase Segregation in Complex Systems 30310.4.3 Metal–Substrate Interaction 30510.4.4 Physical Confinement and Clamping 30710.4.5 Thermal Properties of the System 30910.4.6 Mechanical Stability and Pressure Drop 30910.5 Preparation of Three-Dimensional Supported Nanomaterials 31110.5.1 Support Materials 31110.5.1.1 Silica 31210.5.1.2 Carbon 31410.5.1.3 Other Support Materials 31610.5.2 Preparation Strategies 31710.5.2.1 Solution Impregnation 31810.5.2.2 Melt Infiltration 32010.6 Experimental Results on 3D-Supported Nanomaterials 32210.6.1 Ammonia Borane, (NH3BH3) 32310.6.2 Sodium Alanate, (NaAlH4) 32510.6.3 Magnesium Hydride (MgH2) 32910.6.4 Lithium Borohydride (LiBH4) 33110.6.5 Palladium 33310.7 Conclusions and Outlook 334References 336Index 341