Handbook of Fuels
Energy Sources for Transportation
Inbunden, Engelska, 2021
2 489 kr
Beställningsvara. Skickas inom 11-20 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.A guide to industrially relevant products and processes for transportation fuelsThe Handbook of Fuels offers a comprehensive review of the wide variety of fuels used to power vehicles, aircraft and ships and examines the processes to produce these fuels. The updated second edition reflects the growing importance of fuels and fuel additives from renewable sources. New chapters include information on current production technology and use of bioethanol, biomethanol and biomass-to-liquid fuels. The book also reviews novel additives and performanace enhancers for conventional engines and fuels for novel bybrid engines.This comprehensive resource contains critical information on the legal, safety, and environmental issues associated with the production and use of fuels as well as reviewing important secondary aspects of the use and production of fuels. This authoritative guide includes contributions from authors who are long-standing contributors to the Ullmann's Encyclopedia, the world's most trusted reference for industrial chemistry. This important guide: Contains an updated edition of the authoritative resource to the production and use of fuels used for transportationIncludes information that has been selected to reflect only commercially relevant products and processesPresents contributions from a team of noted experts in the fieldOffers the most recent developments in fuels and additives from renewable sources Written for professionals in the fields of fossil and renewable fuels, engine design, and transportation, Handbook of Fuels is the comprehensive resource that has been revised to reflect the recent developments in fuels used for transportation.
Produktinformation
- Utgivningsdatum2021-10-06
- Mått175 x 254 x 33 mm
- Vikt1 225 g
- FormatInbunden
- SpråkEngelska
- Antal sidor576
- Upplaga2
- FörlagWiley-VCH Verlag GmbH
- ISBN9783527333851
Tillhör följande kategorier
Barbara Elvers, PhD, served in a variety of roles in publishing, first as a freelance translator of textbooks in chemistry, and served as editor in chief for the Ullmann’s Encyclopedia between 1987 and 2020.Andrea Schütze, PhD, is the former global innovation manager of the automotive fuel division of Shell Global Solutions. Based in Hamburg she started as head of the fuels laboratory and moved on to a variety of roles in the fuels and lubricants research & development.
- Preface to the Second Edition xviiPreface to the First Edition xix1 Introduction 1Klaus Reders and Andrea Schütze1.1 History of the Spark Ignited “Otto” Engine and of Gasoline 31.2 History of the Diesel Engine and of Diesel Fuel 141.3 History of Alternative Fuels 191.3.1 Ethanol 191.3.2 Methanol 241.3.3 Vegetable Oils and Hydrotreated Vegetable Oils (HVOs) 241.3.4 Biodiesel/FAME 251.3.5 Liquefied Petroleum Gas (LPG) 281.3.6 Natural Gas 301.4 Emission RegulationsWorldwide 331.4.1 Europe 351.4.2 United States 411.4.3 Japan 481.4.4 China 511.5 Well-to-Wheel Analysis of Alternative Fuels 531.5.1 Life-cycle Assessment 541.5.2 Well-to-Wheel 551.5.3 Boundary Conditions of the JRC Study 561.5.4 Summary of Results of the JRC Study 571.5.4.1 Alternative Liquid Fuels 601.5.4.2 Alternative Gaseous Fuels 611.5.4.3 Electricity and Hydrogen 611.5.4.4 2020+ Horizon 62References 64Part I Automotive Fuels 692 Engine Technology 71Werner Dabelstein, Arno Reglitzky, Andrea Schütze, and Klaus Reders2.1 Otto Engines 712.2 Diesel Engines 73References 753 Fuel Composition and Engine Efficiency 77Werner Dabelstein, Arno Reglitzky, Andrea Schütze, Klaus Reders, and Andreas Brunner3.1 Fuel Composition and Engine Efficiency 773.1.1 Quality Aspects of Gasoline 773.1.1.1 Octane Quality 773.1.1.2 Volatility 793.1.1.3 Fuel Composition to Reduce Toxicity and Exhaust Emissions 803.1.1.4 Stability, Cleanliness, etc. 833.1.1.5 Performance Additives 843.1.2 Quality Aspects of Diesel Fuels 843.1.2.1 Ignition Quality 843.1.2.2 Density 853.1.2.3 Sulfur Content 853.1.2.4 Cold Flow Properties 853.1.2.5 Lubricity 853.1.2.6 Viscosity 863.1.2.7 Volatility 863.1.2.8 Diesel Fuel Stability, Cleanliness, and Safety 863.1.2.9 Diesel Fuel Effects on Exhaust Emissions 863.1.2.10 Performance Additives 88References 884 Fuel Components: Petroleum-derived Fuels 91Werner Dabelstein, Arno Reglitzky, Andrea Schütze, and Klaus Reders4.1 Petroleum-derived Fuels 914.1.1 Gasoline Components 914.1.1.1 Straight-run Gasoline 914.1.1.2 Thermally Cracked Gasoline 934.1.1.3 Catalytically Cracked Gasoline 934.1.1.4 Catalytic Reformate (Platformate) 944.1.1.5 Isomerate 944.1.1.6 Alkylate 944.1.1.7 Polymer Gasoline 944.1.1.8 Oxygenates 954.1.2 Diesel Fuel Components 954.1.2.1 Straight-run Middle Distillate 954.1.2.2 Thermally Cracked Gas Oil 964.1.2.3 Catalytically Cracked Gas Oil 964.1.2.4 Hydrocracked Gas Oil 974.1.2.5 Kerosene 974.1.2.6 Biofuel Components 974.1.2.7 Synthetic Diesel Fuel 984.1.3 Storage and Transportation 98References 995 Liquefied Petroleum Gas 101Stephen M. Thompson, Gary Robertson, RobertMyers, and Andrea Schütze5.1 Introduction 1015.2 Properties 1025.3 Production and Processing 1035.3.1 Recovery from Natural Gas 1035.3.1.1 Recovery and Manufacture in the Refinery 1035.4 Purification 1085.4.1 Adsorptive Purification 1095.4.2 Absorptive Purification 1095.5 Storage and Transportation 1105.5.1 Aboveground Storage 1105.5.2 Underground Storage 1105.5.3 Transportation 1115.6 Uses 1115.6.1 LPG Standards and Regulations 1125.6.1.1 Refueling Infrastructure 1125.6.1.2 Vehicle Conversions to LPG 1135.6.2 Environmental Benefits 1135.6.2.1 Outlook 1155.7 Safety Aspects 1155.7.1 Occupational Health 116References 1166 Natural Gas 119Klaus Reders, Margret Schmidt, and Andrea Schütze6.1 Occurrence 1196.2 Composition 1216.3 Processing 1236.3.1 Oil and Condensate Removal 1246.3.2 Water Removal 1246.3.3 Separation of Natural Gas Liquids 1256.3.3.1 Cryogenic Expansion Process 1266.3.4 Sulfur and Carbon Dioxide Removal 1266.4 Transport/Distribution/Local Blending 1266.5 Properties and Specifications 1276.6 Natural Gas as Automotive Fuel 1296.6.1 Vehicle Refueling Systems 1336.6.1.1 Slow-Fill Refueling 1336.6.1.2 Fast-Fill Refueling 1346.6.2 Vehicle and Engine Concepts 1346.6.2.1 Vehicle Technology 1356.6.3 CNG Vehicles in the Market 1376.6.4 Vehicle Fuel Supply System 1376.6.5 Combustion and Emissions 1396.7 Safety Aspects 1416.8 Biomethane 1416.8.1 Production 1426.8.1.1 Anaerobic Fermentation 1456.8.1.2 Biogas from Solids 1466.8.2 Upgrading of Biogas to Natural Gas Quality 1476.8.2.1 Water Scrubbing and Physical Scrubbing 1476.8.2.2 Chemical Absorption 1486.8.2.3 Membrane Separation 1486.8.2.4 Pressure Swing Adsorption (PSA) 1496.8.2.5 Cryogenic Separation 1496.8.3 Storage and Transportation 1496.8.3.1 Storage 1496.8.3.2 Distribution 1506.8.4 Biomethane Regulations 1506.8.4.1 Regulations and Standards 1516.8.5 Well-to-wheel Analysis for LPG, CNG, and Biomethane 1526.8.5.1 Well-to-Tank Analysis 1526.8.5.2 Compressed Biomethane (CBM) 1556.8.5.3 Well-to-Wheels Analysis 156References 1587 Synthetic Diesel Fuels 161H.P. Calis, Wolfgang Lüke, Ingo Drescher, and Andrea Schütze7.1 XTL Fuels 1627.1.1 History 1627.1.2 XTL Production Process 1627.1.2.1 Fischer–Tropsch Process 1627.1.2.2 IH2 Technology 1667.1.2.3 BTL Fuels 1687.1.3 GTL and BTL Fuel Characteristics 1707.1.3.1 Cold Flow Performance 1717.1.3.2 Lubricity Performance 1747.1.3.3 Impact on Injector Cleanliness and Spray Characteristics 1747.1.3.4 Advantages of Synthetic Fuels for Emission Control 1757.1.4 Outlook 1787.2 DME (Dimethyl Ether) and OME Fuels 1807.2.1 Introduction 1807.2.2 Fuel Standards 1817.2.3 Fuel Properties 1837.2.4 Infrastructure and Safety 1867.2.4.1 Use as Fuel 1877.3 Well-to-Wheel (WTW) Analysis for XTL and DME Fuels 1907.3.1 Well-to-Wheels Analysis for XTL 1907.3.2 Well-to-Tank Analysis for DME 1937.4 Well-to-Wheel Analysis for XTL and DME 195References 1968 Synthetic Gasoline Fuels 201Andrea Schütze8.1 GTL Naphtha 2018.2 Methanol to Gasoline Process (MTG) 2028.3 Production Process 2028.4 Fuel Properties 203References 2049 Ethanol 207Andrea Schütze9.1 Production 2109.1.1 Milling 2119.1.2 Processing of Starch/Maize Mash 2129.1.3 Fermentation of Glucose 2139.1.4 Distillation and Increase of Ethanol Concentration 2139.2 Feedstock 2149.3 Land Use 2159.3.1 Direct Land Use Change Emissions (DLUC) 2179.3.2 Indirect Land Use Change (ILUC) 2179.4 Nitrogen Oxide Emissions 2179.5 Water Foot Print and Impact onWater Table 2199.6 Other Environmental Effects 2199.6.1 Soil Quality/Erosion 2199.6.2 Eutrophication and Acidification 2199.6.3 Biodiversity 2199.7 Bioethanol Made from Lignocellulose 2209.8 Fuel Standards 2219.9 Fuel Properties 2249.9.1 Octane Number 2249.9.1.1 Volatility and Distillation 2269.9.1.2 Heat of Vaporization 2289.9.1.3 Energy Content 2289.9.1.4 Water Content 2289.9.1.5 Corrosion Protection 2289.9.1.6 Denaturant and Denaturant Content 2299.9.1.7 Material Compatibility 2299.9.1.8 Lubricity 2299.9.1.9 Emissions 2299.10 Well-to-Wheels Analysis for Fuel Ethanol and Ethanol Gasoline Blends 2309.10.1 Pathways 2309.10.1.1 Sugar Beet to Ethanol 2309.10.1.2 Wheat to Ethanol 2319.10.1.3 Straw to Ethanol 2319.11 WTT Analysis for Bioethanol 2369.12 WTWAnalysis 237References 24010 Methanol 245Martin Bertau,Michael Kraft, Ludolf Plass, and Hans-JürgenWernicke10.1 Introduction 24810.2 Physical and Chemical Properties 24910.3 Production of Methanol 24910.3.1 Methanol Production Capacities and Markets 25010.3.2 ConventionalMethanol Production Processes 25210.3.2.1 Synthesis Gas Generation 25210.3.2.2 Methanol Synthesis 25510.3.2.3 Liquid Phase Methanol Synthesis (LPMEOH®) 25810.3.2.4 Methanol Distillation 25810.3.3 Renewable Methanol Production Processes 25910.3.3.1 CO2 – Hydrogenation 26010.4 Methanol as Fuel 26110.4.1 History 26310.4.2 Uses 26410.4.2.1 Methanol as a Fuel for Otto Engines 26410.4.2.2 Vehicle Developments 26510.4.2.3 Conclusions 26810.4.2.4 Methanol as Marine Fuel 26910.4.3 Safety Aspects 27010.4.3.1 Explosion and Fire Control 27010.4.3.2 Fire Prevention 27110.4.3.3 Fire Fighting 27110.4.3.4 Small-scale Storage 27110.4.3.5 Large-scale Storage 27110.4.3.6 Large-scale Transportation 27210.4.3.7 Safety Regulations Governing Transportation 27210.4.3.8 Methanol as a Hazard 27210.5 Methanol-based Derivatives as Fuels and Fuel Additives 27310.5.1 Methanol-to-Gasoline (MTG) 27410.5.2 Methyl tert-Butyl Ether (MTBE) 27610.5.3 tert-Amyl Methyl Ether (TAME) 27810.5.4 Dimethyl Ether (DME) 27910.5.5 Oxymethylene Ether (OME) 28110.5.6 Dimethyl Carbonate (DMC) and Methyl Formate (MF) 28510.6 Economic Aspects 28910.6.1 Gas-based Methanol 28910.6.2 Coal-based Methanol 28910.6.3 Biomass-based Methanol 29110.6.4 Renewable Methanol Based on the Recycle of Carbon Dioxide 29210.7 Outlook 297References 29711 2,5-Dimethylfuran (DMF) and 2-Methylfuran (MF) 307Andrea Schütze11.1 Synthesis of Dimethylfuran 30711.2 Properties of 2,5-Dimethylfuran and Methylfuran 30911.3 Combustion and Emissions 311References 31212 Alternative Biofuel Options – Diesel 315Andrea Schütze12.1 Biomass-to-Liquids (BTL) 31512.2 Biodiesel (FAME) 31612.2.1 Production 31812.2.1.1 Introduction 31812.2.1.2 Industrial Process 32112.2.1.3 Feedstock 32212.2.1.4 Microalgae 32412.2.2 AnalyticalMethods 32612.2.2.1 Ester Content and Fatty Acid Composition 32612.2.2.2 Polyunsaturated Methyl Esters Content 32712.2.2.3 Glycerol and Glyceride Content 32812.2.3 Fuel Standards 33212.2.3.1 United States 33212.2.3.2 Europe 33612.2.4 Fuel Properties 33712.2.4.1 Cetane Number 33812.2.4.2 Density and Energy Content 33912.2.4.3 Kinematic Viscosity 33912.2.4.4 Cold Temperature Properties 33912.2.4.5 Filterability 34112.2.4.6 Distillation 34112.2.4.7 Fuel Stability 34112.2.4.8 Water Content and Sediment 34312.2.4.9 Lubricity 34312.2.4.10 Material Compatibility 34312.2.4.11 Engine Deposits 34412.2.4.12 Emissions 34512.3 Vegetable Oils (VO) 34512.3.1 Production 34612.3.2 Fuel Properties 34612.3.2.1 Kinematic Viscosity 34712.3.2.2 Cetane Number 34812.3.2.3 Flash Point 34812.3.2.4 Carbon Residue 34812.3.2.5 Heating Value 34812.3.2.6 Density 34812.3.2.7 Iodine Number 34912.3.2.8 Fuel Stability 34912.3.2.9 Calcium, Magnesium, and Phosphorus 35012.3.2.10 Total Contamination andWater Content 35012.3.2.11 Acid Value 35012.3.3 Fuel Standards 35012.4 Hydrotreated Vegetable Oils 35112.4.1 Production 35212.4.1.1 Process 35212.4.1.2 Production Plants 35412.4.2 Fuel Standard and Properties 35412.4.2.1 Density and Energy Content 35512.4.2.2 Distillation Characteristics 35512.4.2.3 Cold Temperature Properties 35612.4.2.4 Cetane Number 35612.4.2.5 Fuel Stability 35612.4.2.6 Lubricity 35712.4.2.7 Material Compatibility 35712.4.2.8 Emissions and Combustion 35712.5 Well-to-Wheel Analysis of FAME and HVO Fuels 35712.5.1 FAME Fuels 35912.5.1.1 WTT Analysis 35912.5.1.2 WTWAnalysis 36112.5.2 HVO Fuels 36312.5.2.1 WTT Analysis 36312.5.2.2 WTWAnalysis 364References 36613 Hydrogen 373Lalit M. Das13.1 Introduction 37313.2 Life Cycle Analysis 37313.3 Hydrogen Production 37413.4 Historical Overview of Hydrogen Engine: Research and Development 37513.5 Properties of Hydrogen which Influence Engine Combustion 37713.6 Undesirable Combustion Phenomena 38113.7 Design Criteria for Hydrogen Engines 38213.8 Hydrogen-fueledWankel Engine 38413.9 Performance Characteristic of a Hydrogen-fueled SI Engine 38513.10 Exhaust Emissions 38613.11 Combustion Characteristics 38713.12 Hydrogen Use in CI Engines 38913.13 Hydrogen-CNG Blend 39113.14 Safety Criteria for Hydrogen Engines 39213.15 Hydrogen Detection 39313.16 Storage of Hydrogen 39313.17 Hydrogen Transportation and Distribution 39413.18 Hydrogen Vehicles based on Internal Combustion Engine 39513.19 Conclusion 398References 39814 Octane Enhancers 403Marco Di Girolamo, Maura Brianti, and MarioMarchionna14.1 Introduction 40314.2 Technical Information 40514.2.1 Combustion in Otto Engines 40514.2.2 Knock Phenomena 40614.2.3 Octane Number 40614.3 Types of Octane Enhancers 40914.4 Metal-containing Additives 40914.4.1 Alkyl Lead Compounds 41214.4.2 Methylcyclopentadienyl Manganese Tricarbonyl 41414.5 Ashless Octane Enhancers 41514.5.1 Heteroatom-based Components 41514.5.1.1 History of Fuel Oxygenates 41714.5.1.2 Properties of Oxygenates 42014.5.1.3 Production 42414.5.1.4 Toxicology 42614.5.2 Pure Hydrocarbon Components 427References 428Further Reading 43015 Hybrid and Electrified Powertrains 431Jakob Andert, MaximilianWick, Rene Savelsberg, andMichael Stapelbroek15.1 Introduction 43115.2 Classification 43215.2.1 Topologies 43215.2.1.1 Serial Hybrids 43315.2.1.2 Parallel Hybrids 43415.2.1.3 Power-split Hybrids 43515.2.2 Degree of Hybridization 43615.3 Functionalities 43715.3.1 Regenerative Braking 43715.3.2 Load Point Shift/Boosting 43815.3.3 E-drive and Sailing 43915.4 Battery 44015.4.1 NiMH Batteries 44115.4.2 Li-ion Batteries 44215.5 Energy Management 44315.6 Market Situation and Outlook 444References 44416 Fuel Cells 447Sören Tinz, Steffen Dirkes,MariusWalters, and Jakob Andert16.1 Transportation Applications 44716.2 Fundamentals 44916.2.1 Auxiliaries 45216.2.1.1 Air Supply System 45216.2.1.2 Hydrogen Supply System 45416.2.1.3 Cooling Circuit 45416.2.1.4 HV Architecture 45516.2.1.5 Controls 45516.2.1.6 Integrated System Design 45516.2.2 Onboard Hydrogen Storage 45616.3 Costs, Durability, and Reliability 45716.4 Cold and Freeze Start 45916.5 Efficiency 45916.6 Summary 460References 460Part II Automobile Exhaust Control 46517 Introduction 467Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara ElversReference 46918 Pollutant Formation and Limitation 471Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers18.1 Carbon Monoxide 47118.2 Hydrocarbons 47118.3 Oxides of Nitrogen (NOx) 47218.4 Particulate Emissions 47218.5 Carbon Dioxide (CO2) 47318.6 Sulfur Compounds 473Reference 47419 Catalytic Exhaust Aftertreatment, General Concepts 475Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers19.1 The Physical Design of the Catalytic Converter 47519.1.1 Ceramic Monoliths 47719.1.2 MetallicMonoliths 47719.1.3 Particulate Filters 47819.1.4 Extruded Catalysts 47819.2 TheWashcoat 47819.3 The Catalytic Material 48019.4 Production of Catalysts 480References 48120 Catalytic Aftertreatment of Stoichiometric Exhaust Gas 483Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers20.1 Three-way Catalysts 48420.2 Oxygen Storage in Three-way Catalysts 48520.3 Precious Metals inThree-way Catalysis 487References 48721 Exhaust Aftertreatment for Diesel Vehicles 489Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers21.1 The Diesel Oxidation Catalyst 48921.1.1 Oxidation of Particulate Emissions 49021.1.2 Oxidation of SO2 49021.1.3 Oxidation of NO 49021.1.4 Particulate Filter Regeneration 49021.1.5 Pt/Pd Dispersion 49121.2 The Particulate Filter 49121.2.1 Soot Oxidation by Oxygen 49221.2.2 Soot Oxidation by NO2 49221.2.3 Ash Load 49321.2.4 Open Filter Systems 49321.3 NOx Treatment of Oxygen-rich Exhaust 49421.3.1 HC–DeNOx 49421.3.2 The NOx Adsorber Catalyst 49521.3.3 Selective Catalytic Reduction (SCR) with Ammonia 49621.3.4 NH3 Generation Onboard 49621.3.5 Vanadium SCR Catalysts 49721.3.6 Zeolite-based SCR Catalysts 49821.3.7 Oxidation Catalyst Upstream of the SCR Catalyst 49822 Exhaust Aftertreatment for Lean-burn Gasoline Engines 499Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers23 Conclusion and Outlook 501Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara ElversPart III Aviation Fuels 50324 Aviation Turbine Fuels 505Geoff J. Bishop and Barbara Elvers24.1 History 50524.1.1 Fuel Types and Specifications 50524.1.1.1 Specification Requirements 50724.1.1.2 Fuel Properties 50724.1.1.3 Nonspecification Properties 51624.1.2 Production 51824.1.2.1 Fuel 51824.1.2.2 Additives 52024.1.3 Handling, Storage, and Transportation 52224.1.3.1 System Descriptions 52224.1.3.2 Contamination-removal Equipment 52224.1.4 Legal Aspects 52324.1.5 Environmental Aspects 52324.1.6 Economic Aspects 52324.1.7 Future Trends 52424.1.7.1 Petroleum-Derived Fuels 52424.1.7.2 Alternative Fuels 524References 525Further Reading 52725 Aviation Gasoline (Avgas) 529Geoff J. Bishop and Barbara Elvers25.1 History 53025.2 Avgas Grades 53025.2.1 Avgas 100 53025.2.2 Avgas 100LL 53025.2.3 Avgas 100VLL 53125.2.4 Avgas UL82 53125.2.5 Avgas UL87 53125.2.6 Avgas UL91 531Reference 531Further Reading 531Part IV Marine Fuels 53326 Marine Fuels 535Christopher FriedrichWirz, Torsten Mundt, and Klaus Reders26.1 History 53526.2 Specifications 53626.3 Composition 53626.4 Properties 53726.4.1 Distillate Fuels 53726.4.2 Residual Fuels 537Reference 540Index 541