Del 7

"Golden" Non-euclidean Geometry, The: Hilbert's Fourth Problem, "Golden" Dynamical Systems, And The Fine-structure Constant

Inbunden, Engelska, 2016

Av Alexey Stakhov, Samuil Aranson, Russia) Stakhov, Alexey (Int'l Club Of The Golden Section, Canada & Academy Of Trinitarism, Russia) Aranson, Samuil (Russian Academy Of Natural Sci, STAKHOV ALEXEY, Stakhov Alexey

1 999 kr

Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

This unique book overturns our ideas about non-Euclidean geometry and the fine-structure constant, and attempts to solve long-standing mathematical problems. It describes a general theory of 'recursive' hyperbolic functions based on the 'Mathematics of Harmony,' and the 'golden,' 'silver,' and other 'metallic' proportions. Then, these theories are used to derive an original solution to Hilbert's Fourth Problem for hyperbolic and spherical geometries. On this journey, the book describes the 'golden' qualitative theory of dynamical systems based on 'metallic' proportions. Finally, it presents a solution to a Millennium Problem by developing the Fibonacci special theory of relativity as an original physical-mathematical solution for the fine-structure constant. It is intended for a wide audience who are interested in the history of mathematics, non-Euclidean geometry, Hilbert's mathematical problems, dynamical systems, and Millennium Problems.See Press Release: Application of the mathematics of harmony - Golden non-Euclidean geometry in modern math

Produktinformation

  • Utgivningsdatum2016-09-06
  • Mått316 x 161 x 21 mm
  • Vikt582 g
  • FormatInbunden
  • SpråkEngelska
  • SerieSeries On Analysis, Applications And Computation
  • Antal sidor308
  • FörlagWorld Scientific Publishing Co Pte Ltd
  • ISBN9789814678292

Du kanske också är intresserad av