Global Well-Posedness of High Dimensional Maxwell-Dirac for Small Critical Data
Häftad, Engelska, 2020
1 259 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on $\mathbb{R}^{1+d} (d\geq 4)$ for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell-Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell-Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Krieger-Sterbenz-Tataru, which says that the most difficult part of Maxwell-Dirac takes essentially the same form as Maxwell-Klein-Gordon.
Produktinformation
- Utgivningsdatum2020-07-30
 - Mått178 x 254 x undefined mm
 - Vikt215 g
 - FormatHäftad
 - SpråkEngelska
 - SerieMemoirs of the American Mathematical Society
 - Antal sidor94
 - FörlagAmerican Mathematical Society
 - ISBN9781470441111