Global Cable Industry
Materials, Markets, Products
Inbunden, Engelska, 2021
3 109 kr
Beställningsvara. Skickas inom 3-6 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.A comprehensive guide to cable materials, markets, and products The Global Cable Industry presents a comprehensive overview of the most recent developments in automotive cables, nuclear power station cables, undersea cables, coaxial cables, optical wires, medium- and high-voltage cables. With contributions from noted researchers and developers in the field, the book includes information on material developments for polymers, crosslinked elastomers and flame retardant non-halogen cable compounds. The contributors provide information on technologies to crosslink polymers, an overview of foam polymers, and field experiences of the new cable fire test within the Construction Product Regulation framework. In addition, this comprehensive resource contains the most relevant economic questions related to the cable industry that highlights materials, market segments, and countries. This important book: Includes contributions from researchers and developers of key companies in the cable industry Presents information on the most recent developments in the field Covers the most industry-relevant cable types such as automotive, nuclear power cables, undersea, coaxial, optical, medium- and high-voltage cables Written for power engineers, materials scientists, chemists and engineering scientists in industry, The Global Cable Industry is an up-to-date guide to the multi-billion-dollar cable enterprise.
Produktinformation
- Utgivningsdatum2021-04-21
- Mått170 x 244 x 26 mm
- Vikt936 g
- FormatInbunden
- SpråkEngelska
- Antal sidor416
- FörlagWiley-VCH Verlag GmbH
- ISBN9783527346271
Tillhör följande kategorier
Günter Beyer, PhD was manager of the physical and chemical laboratories at Kabelwerk EUPEN AG (Belgium); now he works globally as a consultant. In 2003 and 2004 he received the Jack Spergel Memorial Award by IWCS for his fundamental work on nanocomposites by organoclays and carbon nanotubes as new classes of flame retardants for polymers.
- About the Editor xv1 Overview of the Global Cable Industry – Markets and Materials 1Astrid Aupetit1.1 Demand for Polymeric Material 31.1.1 Main Companies Profile 31.1.1.1 Prysmian 41.1.1.2 Nexans 41.1.1.3 Southwire 51.1.1.4 Sumitomo Electric Industries 51.1.1.5 Furukawa Electric Co., Ltd. 51.1.1.6 LS Cable & System 61.1.1.7 Leoni AG 61.1.1.8 Hengtong Group 61.1.2 Global Demand 71.2 Asia and Australasia 101.2.1 Demand for Cable 101.2.2 Demand for Polymeric Material 111.3 Europe 121.3.1 Demand for Cables 121.3.2 Demand for Polymeric Materials 131.4 The Middle East and Africa 141.4.1 Demand for Cables 141.4.2 Demand for Polymeric Materials 141.5 North America 161.5.1 Demand for Cables 161.5.2 Demand for Polymeric Materials 171.6 South and Central America 181.6.1 Demand for Cables 181.6.2 Demand for Polymeric Materials 192 Thermoplastics for Cables 21Theo Geussens2.1 Introduction 212.2 Polyolefin Materials 212.2.1 Polyethylene 222.2.1.1 Manufacturing Processes 252.2.1.2 Cable Applications 262.2.2 Polypropylene (PP) 322.2.2.1 Manufacturing Processes 332.2.2.2 Applications 332.3 Chlorinated Polymers 352.3.1 Polyvinylchloride (PVC) 352.3.2 Chlorinated Polyethylene (CPE) 362.4 Fluoropolymers 372.4.1 Fluoro-Ethylene Propylene polymer 372.4.2 Polytetrafluoroethylene (PTFE), Ethylene Tetrafluoroethylene (ETFE), and Perfluoroalkoxy Polymer (PFA) 382.4.3 Ethylene Chlorotrifluoroethylene (ECTFE) 402.4.4 Polyvinyldifluoride (PVDF) 402.5 Polyamide (PA) 402.6 Polyesters 412.6.1 Polybutylphtherephtalate (PBT) 412.6.2 Polyester Elastomers 412.7 Thermoplastic Polyurethane 42References 433 Elastomers for Cables 57Burkhard Herpich3.1 Introduction 573.2 Rubber Compounds 633.2.1 Rubber 633.2.2 Fillers 663.2.3 Plasticizer 683.2.4 Stabilizers 703.2.5 Classical Cross-linking Systems 713.2.5.1 Cross-linking with Sulfur Systems 713.2.5.2 Cross-linking with Peroxide Systems 713.2.5.3 Moving Die Rheometers (MDRs) 723.2.6 Other Cross-linking Systems 733.2.6.1 Cross-linking by Irradiation 733.2.6.2 Cross-linking with Silanes 733.3 Compounding 733.4 Extrusion 763.5 Cross-linking/Vulcanization 783.5.1 Vulcanization in Saturated HotWater Steam 783.5.2 Vulcanization in Liquid Salt Mixtures under Pressure 803.5.3 Electron Beam Cross-linking 81References 824 Extrusion of Cables 85Stéphan Puissant4.1 Historical Introduction to Cable Extrusion 854.2 Extruder in Cable Lines 874.2.1 Description of the Single Screw Extruder 874.2.1.1 Different Functional Screw Zones 874.2.1.2 Description of a Screw Geometry 884.2.2 Feeding Zone of the Extrusion Screw 894.2.2.1 Friction-Based Feeding Mechanism 894.2.2.2 Simple Modeling of the Feeding Zone 904.2.2.3 Improvement of the Feeding Zone: Use of Helical Grooved Barrel 954.2.3 Thin Film Plastification 974.2.3.1 Melting on the Backside of Flight 974.2.3.2 Initiation of Liquid Film 984.2.3.3 Melt Flow Rate in the Liquid Film 994.2.3.4 Influence of Different Parameters on Melting Length 994.2.3.5 Thin Film Melting with the Help of a Barrier Zone 1034.2.3.6 Barrier Zone, Its Advantages, and Its Drawbacks 1034.2.4 Metering Zone 1044.2.4.1 Representation of the Metering Zone 1044.2.4.2 1D Analysis 1054.2.5 Example of Results for 1D Model Including the Three Zones of the Screw 1054.2.5.1 Influence of Friction Coefficients on the Screw Characteristics 1054.2.5.2 Interaction Between Compression and Friction in the Feeding Zone 1064.3 Accessories for Extruders 1074.3.1 Mixing Zones 1074.3.1.1 Observed Defaults 1074.3.1.2 Devices Selection Criteria 1094.3.1.3 Example of Results for Finathene HDPE 1114.3.2 Melt Filtration Systems 1134.3.3 Melt Gear Pumps 1144.4 Extrusion Heads or Dies 1154.4.1 Description of the Extrusion Head 1154.4.1.1 Extrusion Head Function 1154.4.2 Distributors 1174.4.2.1 Head with Coat Hanger Type Distribution Channels 1174.4.2.2 Distribution FunctionThrough Flattened Distribution Channels 1194.4.2.3 Distributor with Helical Channels 1194.4.3 Diameter Adaptation Function (Tooling) 1194.4.3.1 Tube Tooling, DDR 1204.4.3.2 Tube Tooling, DRB 1214.4.4 Relation Between Pressure and Average Temperature Increase in an Extrusion Head 1214.5 Cooling 1224.5.1 Cooling Length Analytical Calculation for FineWires 1224.5.2 Cooling Length Finite Difference Calculation for aWire of Radius >1mm with Copper Core and PE Insulation 1234.6 Quality 1244.6.1 The Quality Parameter and Its Measurement 1244.6.1.1 Diameter and Product Circularity Measurement 1254.6.1.2 ConcentricityMeasurement 1264.6.1.3 Insulation Defects Measurements (Cable orWire) 1264.6.1.4 CapacityMeasurement (TelecommunicationWire) 1274.6.1.5 SheathingWall Thickness Measurement 1284.6.1.6 Periodicity of Measurement Analysis 1284.6.2 Common Production Defects, Causes, and Remedies 130References 1305 Foam Extrusion 133Horst A. Scheid5.1 Motivation 1335.2 Physical Basics 1335.3 Selection of Polymer 1365.4 Selection of Blowing Agents 1395.5 Extrusion Equipment 1415.5.1 Extruder and Screw 1435.5.2 Dosing Station 1455.5.3 Gas Injection 1455.5.4 Melt Transport from Screw to Die 1485.5.5 Cooling Trough 1495.5.6 Measurement Devices 1515.6 Processing 1515.6.1 Extrusion and Die Setup 1525.6.2 Process Control Modes 1535.6.3 PBA Handling 1545.6.4 Maximum Void and Bubble Size 1545.6.5 Inline Analysis by FFT 156Glossary 157References 1586 Flame Retardancy of Cables 161Günter Beyer6.1 Introduction 1616.2 Flame Propagation Tests forWires and Cables 1636.3 Smoke, Corrosivity, and Toxicity Tests forWires and Cables 1646.4 Circuit Integrity and Functional Integrity for Security Cables 1656.5 Laboratory Tests for the Flammability ofWire and Cable Materials 1676.6 Polymers for Flame-RetardantWires and Cables 1676.7 Flame Retardants for Flame-RetardantWires and Cables 1686.8 Flame-Retardant PVC 1696.8.1 Flame Retardants for PVC and Flame-Retardant PVC Cable Formulations 1696.8.1.1 Phthalate-Based Plasticizers and Other Plasticizers 1696.8.1.2 Antimony Trioxide 1696.8.1.3 Brominated Phthalate Plasticizers 1706.8.1.4 Chlorinated Paraffins 1716.8.1.5 Aluminum Hydroxide (ATH) and Magnesium Hydroxide (MDH) 1716.8.1.6 Zinc Borate 1726.8.1.7 Phosphate Plasticizers 1726.8.1.8 Smoke Suppressants 1726.8.1.9 Nanocomposites 1736.9 Flame-Retardant Polyolefins 1746.9.1 Flame Retardants for Polyolefins and HFFR Cable Formulations 1756.9.1.1 Aluminum Hydroxide (ATH) and Magnesium Hydroxide (MDH) 1756.9.1.2 Zinc Borate and Polysiloxanes 1766.9.1.3 Nanocomposites 1766.9.1.4 Ceramifiable Compounds 1776.10 CPR (Construction Products Regulation) 178References 1797 CPR Testing of Cables 181Franck Poutch7.1 Introduction 1817.2 FIPEC Program 1827.2.1 FIPEC Approach 1837.2.1.1 Real-Scale Scenario 1847.2.1.2 Cable Selection 1857.2.1.3 Real-Scale Fire Tests 1867.2.1.4 Full-Scale Fire Test 1867.2.1.5 Capability Study 1887.2.1.6 Correlation Between Real- and Large-Scale Test 1897.3 Construction Product Regulation (CPR) Framework 1907.3.1 EN 13 501-6 1937.3.2 EN ISO 1716 1967.3.3 EN 60332-1-2 1967.3.4 EN 50399 1987.3.5 EN ISO 61034-1 (Apparatus) and -2 (Test Procedure) 1997.3.6 EN 60754-2 201References 2067.A Measuring Heat Release Rate (HRR) by Oxygen Consumption Technique, and Smoke Density 2087.A.1 Measure of the Heat Release Rate (HRR) by Oxygen Consumption Technique 2087.A.1.1 Burning of Methane 2087.A.1.2 Determination of the Mass Flow Rate (ṁa) 2107.A.1.3 Smoke Opacity 2117.A.1.4 Calculation of FIGRA and SMOGRA Index 2128 Crosslinking Technologies 215Ron Goethals8.1 Introduction 2158.2 Crosslinking, Curing, Vulcanizing 2168.3 Crosslinking Processes 2178.4 The Silane-Crosslinking Process 2188.4.1 The Sioplas®Process 2188.4.2 The Monosil®Process 2198.4.3 Silane Copolymers 2208.4.4 Reactivity of the Silane Crosslinking Process 2208.4.5 Advantages and Disadvantages of Silane Crosslinking 2218.5 The Peroxide Crosslinking Process (CV Curing) 2228.5.1 Polymer Selection for Peroxide Crosslinking 2238.5.2 Advantages and Disadvantages of Continuous Vulcanization 2248.6 e-Beam Crosslinking 2258.6.1 Awareness of e-Beams in Our Daily Life 2258.6.2 The Principle of an e-Beam 2278.6.3 Creating a High Voltage e-Beam 2288.6.4 Scan Horn and BeamWindow 2288.6.5 Under-Beam Handling System (UBHS) 2298.6.6 Control System 2318.6.7 Safety 2328.6.7.1 Radiation and Radioactivity 2328.6.7.2 Bremsstrahlung or X-rays 2328.6.7.3 Shielding and Radioactivity 2338.6.7.4 Other Safety Systems 2348.6.7.5 Ozone 2358.6.7.6 IAEA 2358.6.8 Most Important Parameters During e-Beam Crosslinking 2358.6.8.1 Voltage 2358.6.8.2 Amperage 2378.6.8.3 Radiation Dose 2378.6.9 Capacity of an e-Beam 2418.6.9.1 Functional Capacity 2418.6.9.2 Efficiency 2418.6.9.3 Dose 2418.6.10 Temperature Rise 2428.6.11 Compound Design 2428.6.11.1 Polymers 2428.6.12 Costs Indications of e-Beam Crosslinking 2438.6.12.1 Annual Costs 2438.6.12.2 AnnualThroughput and Costs per Kilograms 2448.6.13 Advantages and Disadvantages of e-Beam Crosslinking 2448.7 Conclusions 245Further Reading 246Silane Crosslinking 246Peroxide Crosslinking 246Electron-Beam Crosslinking 247Hot-Set-Elongation 2489 Nuclear Power Station Cables 249Frank Liu9.1 Development of Nuclear Power in theWorld 2499.1.1 Development Stage of Nuclear Power in theWorld 2499.1.2 Current Status of Nuclear Power Development All Over the World 2519.1.3 Technical Characteristics and Differences of Nuclear Power Plants 2569.1.3.1 Technical Characteristics of Various Reactors of Nuclear Power Plants 2569.1.3.2 Technical Development of Nuclear Power Plant 2579.1.3.3 Technical Characteristics of Typical Nuclear Power Plants in the World 2589.1.3.4 Characteristics of CPR1000 Nuclear Power Plant 2609.2 Development of Cables for Nuclear Power Plants 2619.2.1 Development History of Cables for Nuclear Power Plants 2619.2.2 Classification of Cables for Nuclear Power Plants 2639.2.2.1 Classification by Use Function 2639.2.2.2 Classification by Safety Level 2639.2.2.3 Classification by Technical Types of Nuclear Power Plants 2649.2.2.4 Classification by Use Occasion 2649.2.3 Characteristics of Cables for Nuclear Power Plants 2649.2.4 Standards for Nuclear Cables 2679.2.5 Qualification and Test of Nuclear Cables 2679.2.5.1 Significance of Class 1E Equipment Qualification in Nuclear Power Plants 2679.2.5.2 Method of Class 1E Equipment Qualification in Nuclear Power Plants 2699.2.5.3 Content and Difference of Class 1E Cable Qualification Test for Nuclear Power Plants 2709.2.5.4 Key Points for Qualification of Class 1E Nuclear Power Cables 2709.2.6 Research on Nuclear Cable Compounds 2779.2.6.1 Application of Available Compounds 2779.2.6.2 Discussion on Future Materials 2819.3 Future Developments of Nuclear Cables 2849.3.1 Development Trend of Global Nuclear Power 2849.3.2 Development Trend of Nuclear Power in China 2859.3.3 Development Trend of Nuclear Cables 286References 28910 Submarine Cables 291George Georgallis10.1 Introduction 29110.2 Submarine Power Cable Applications 29110.3 Submarine Power Cable Design Overview 29210.4 Power System Considerations 29310.5 Submarine Power Cable Elements 29310.5.1 Cable Conductor 29310.5.2 Cable Insulation 29410.5.2.1 Lapped Insulation 29410.5.2.2 Extruded Insulation 29510.5.2.3 HVDC Cables 29610.5.3 Metallic Sheaths 29610.5.4 Armor Layers 29710.5.5 Other Cable Elements 29710.6 Submarine Cable Manufacturing 29810.7 Submarine Power Cable Accessories 29910.8 Submarine Power Cable Testing 30110.8.1 Dynamic Submarine Cable Testing 30310.8.2 Submarine Power Cable Sizing and Other Design Considerations 30510.8.3 Submarine Power Cable Installation, Protection, and Commissioning 30610.9 Submarine Power Cables – What Next? 308References 30811 MV and HV Cables 311DetlefWald11.1 History of Cables 31111.2 Today’s Cables 31111.2.1 Paper Cables 31111.2.2 Extruded Cables 31211.3 Conductor Design 31211.4 Conductor Screen 31211.5 Insulation 31311.5.1 Production of Polyethylene 31511.5.1.1 Influence of the Chain Transfer Agent 31511.5.1.2 Cross-linked Polyethylene 31711.5.1.3 Cleanliness 32111.5.2 Insulation Screen 32111.5.3 Metallic Screen 32311.5.3.1 Different Types of Metallic Protections 32411.5.3.2 Corrugated Screens 32511.5.4 Comparing Different Metallic Screens 32711.6 Jacketing/Sheathing 328References 32912 Coaxial Cables 331Timothy Cooke12.1 History 33112.2 Design: Components and Principles 33212.2.1 Components 33212.2.2 Principles 33612.3 Characteristic Impedance (Zo) 33612.4 Velocity of Propagation 33812.5 Capacitance 33912.6 Attenuation 33912.7 Impedance Mismatch – Reflection Coefficients and Return Loss 34212.8 Applications 34312.9 Video, TV, and Broadband Applications 34412.10 Automotive Coaxial Cable Applications 34512.11 Conclusions 348References 34913 Optical Fiber Cables 351Chen Baoping, Yao Di, and Qian Feng13.1 Optical Communication System 35113.2 Fiber Main Features and Transmission Theory 35313.2.1 Principle of Total Reflection and Optical Transmission Waveguide 35313.2.2 The Classification and Main Features of Fiber 35513.2.2.1 Classification of Fiber 35513.2.2.2 Main Features of Fiber 35913.2.3 Development of Optical Fiber Technology 35913.2.3.1 Large Effective Area and Ultralow Loss Fiber 35913.2.3.2 Photonic Crystal Fiber 36113.2.3.3 Next Generation of Communication Fiber 36113.3 Cable Design and Manufacturing Technology 36313.3.1 Optical Cable Structural Design 36313.3.1.1 Design Principle 36313.3.1.2 Design Calculation of Optical Cable Structure 36513.3.2 Manufacturing Process Route for Optical Cable 37013.3.2.1 Technology of Fiber Coloring 37113.3.2.2 Technology of Fiber Ribbon 37213.3.2.3 Fiber Secondary Coating 37213.3.2.4 Stranding Cable Technology 37413.3.2.5 Sheath Extrusion of Optical Cable 37413.3.3 Optical Cable Standards and Key Test Items 37513.3.3.1 Cabled Fiber Attenuation Test 37613.3.3.2 Test Principle and Methods for Cabled Fiber PMD 37613.3.3.3 Cable Tensile Curve 37713.4 Classification of Optical Cables and Typical Application 37813.4.1 Classification of Optical Cables 37813.4.1.1 Structure Characteristics of Indoor Optical Cable 37913.4.1.2 Structure Characteristics of Outdoor Optical Cable 38013.4.1.3 Structure and Technical Characteristics of Electric Optical Cable 38113.4.2 Introduction to Typical Cable Structure and Application Scenarios 38213.4.2.1 Typical Cable Structure and Application Scenarios 38213.4.2.2 Introduction to New Special Optical Cable 38513.5 Scale and Market of Fiber and Cable Industry 386References 387Index 389
Hoppa över listan
Du kanske också är intresserad av
Flame Retardant Selection for Polymers
Vahabi,Henr, Henri Vahabi, Mohammad Reza Saeb, G�nter Beyer, Günter Beyer, France) Vahabi, Henri (Full Professor, University of Lorraine, Metz, Poland.) Saeb, Mohammad Reza (Professor, Department of Pharmaceutical Chemistry, Medical University of Gdansk, Belgium) Beyer, Gunter (Founder and Consultant, Fire and Polymer
3 209 kr