Generalised Jacobson-Morosov Theorem

Häftad, Engelska, 2010

Av Peter O'Sullivan

1 169 kr

Tillfälligt slut

The author considers homomorphisms H \to K from an affine group scheme H over a field k of characteristic zero to a proreductive group K. Using a general categorical splitting theorem, André and Kahn proved that for every H there exists such a homomorphism which is universal up to conjugacy. The author gives a purely group-theoretic proof of this result. The classical Jacobson-Morosov theorem is the particular case where H is the additive group over k. As well as universal homomorphisms, the author considers more generally homomorphisms H \to K which are minimal, in the sense that H \to K factors through no proper proreductive subgroup of K. For fixed H, it is shown that the minimal H \to K with K reductive are parametrised by a scheme locally of finite type over k.

Produktinformation

  • Utgivningsdatum2010-01-01
  • Vikt456 g
  • FormatHäftad
  • SpråkEngelska
  • SerieMemoirs of the American Mathematical Society
  • FörlagAmerican Mathematical Society
  • ISBN9780821848951

Tillhör följande kategorier