Gas Hydrates 2
Geoscience Issues and Potential Industrial Applications
Inbunden, Engelska, 2018
Av Livio Ruffine, Daniel Broseta, Arnaud Desmedt, France) Ruffine, Livio (French Research Institute for the Exploitation of the Sea, Brest, France) Broseta, Daniel (University of Pau and Pays de l'Adour, France) Desmedt, Arnaud (University of Bordeaux
2 259 kr
Produktinformation
- Utgivningsdatum2018-03-28
- Mått163 x 239 x 25 mm
- Vikt703 g
- FormatInbunden
- SpråkEngelska
- Antal sidor384
- Upplaga2
- FörlagISTE Ltd and John Wiley & Sons Inc
- ISBN9781786302212
Tillhör följande kategorier
Livio Ruffine is a research scientist at the French Research Institute for the Exploitation of the Sea (Ifremer) in Brest, France. His research interests focus on the oceanic methane cycle, with an emphasis on the geochemical dynamics of gas-hydrate deposits.Daniel Broseta is Professor and member of the Laboratory of Complex Fluids and their Reservoirs at the University of Pau and Pays de l'Adour in France. His research interests are in interfacial and colloidal phenomena.Arnaud Desmedt is a CNRS researcher at the Institute of Molecular Science at the University of Bordeaux in France. His main research interests are molecular spectroscopy (experimental and modelling) applied to inclusion chemistry and fundamental issues on clathrate hydrates.
- Preface xiLivio RUFFINE, Daniel BROSETA and Arnaud DESMEDTPart 1 Field study and laboratory experiments of hydrate-bearing sediments 1Introduction to Part 1 3Livio RUFFINEChapter 1 Water Column Acoustics:Remote Detection of Gas Seeps 11Carla SCALABRIN and Stéphanie DUPRÉ1.1 Introduction 111.2 Principle of the measurement 141.2.1 Instrumentations 141.2.2 Qualitative and quantitative measurements 141.3 Bibliography 18Chapter 2 Geophysical Approach 21Bruno MARSSET2.1 Introduction 212.2 Overview 212.3 Seismic processing 232.3.1 Positioning phase 232.3.2 Preprocessing phase 242.3.3 Processing phase 252.4 Example of gas hydrate exploration: the SYSIF instrument 282.5 Bibliography 29Chapter 3 Hydrate Seismic Detection 31Stephan KER3.1 Wave velocities of hydrate-bearing sediments 323.1.1 Empirical equations 323.1.2 Effective medium theories 333.2 Bibliography 34Chapter 4 Geomorphology of Gas Hydrate-Bearing Pockmark 37Vincent RIBOULOT4.1 Introduction 374.2 Generalities about pockmarks 384.3 Impact of gas hydrate on seafloor deformation 394.4 Morphological evolution of gas hydrate pockmarks 424.5 Distinction between gas hydrate-bearing and gas hydrate-free pockmarks 444.6 Bibliography 45Chapter 5 Geotechnics 49Sébastien GARZIGLIA5.1 Introduction 495.2 The Penfeld system 505.2.1 Piezocone and acoustic soundings in gas hydrate-bearing sediments 525.3 Bibliography 54Chapter 6 Geochemistry 57Livio RUFFINE, Sandrine CHÉRON, Emmanuel PONZEVERA, Christophe BRANDILY,Patrice WOERTHER, Vivien GUYADER, Audrey BOISSIER, Jean-Pierre DONVAL and Germain BAYON6.1 Introduction 576.2 Sampling geological materials from hydrate-bearing sediment 586.2.1 The Calypso corer 586.2.2 Sampling of sediments, carbonates and pore fluids from the Calypso corer 626.3 Analyses 656.3.1 Sediment and carbonate 656.3.2 Gases 756.3.3 Pore water 786.4 Bibliography 82Chapter 7 Benthic Ecosystem Study 85Karine OLU, Laurent TOFFIN and Christophe BRANDILY7.1 Microbial ecology in hydrate-bearing sediments 857.1.1 Study sites containing hydrate-bearing sediments 857.1.2 Sampling strategy for microbiology study of hydrate-bearing sediments 867.1.3 Laboratory analyses 877.2 Macrobial ecology studies at cold seeps 917.2.1 Mapping biogenic habitats 937.2.2 Chemical characterization of biogenic habitats 977.2.3 Sampling in biogenic habitats 1037.2.4 Fauna 1067.2.5 Symbiosis studies 1107.3 Bibliography 111Chapter 8 Physicochemical Properties of Gas Hydrate-bearing Sediments 121Ludovic LEGOIX, Elke KOSSEL, Christian DEUSNER, Livio RUFFINE and Matthias HAECKEL8.1 Introduction 1218.2 Gas hydrate formation and dissociation 1248.3 Fluid transport in gas hydrate-bearing sediments 1288.4 Thermal and electrical properties of gas hydrate-bearing sediments 1338.5 Distribution and occurrence of gas hydrates in sediments 1378.6 Experimental investigation of dynamic processes in gas hydrate-bearing sediments 1398.7 Bibliography 149Chapter 9 Small-scale Laboratory Studies of Key Geotechnical Properties which are Not Possible to Measure from In Situ Deployed Technologies 165Sébastien GARZIGLIA9.1 Introduction 1659.2 Influence of gas hydrates on the stiffness and strength properties of sediments 1669.2.1 Elastic or small-strain stiffness properties 1669.2.2 Large-strain stiffness and strength properties 1689.2.3 Geotechnical consequences of gas hydrate destabilization 1709.3 Bibliography 172Part 2 Modeling of Gas Hydrate-bearing Sediments and Case Studies 177Chapter 10 Geomechanical Aspects 179Assaf KLAR and Shun UCHIDA10.1 Introduction 17910.2 Geomechanical characteristics 17910.3 Constitutive models for continuum mechanics frameworks 18110.3.1 Stress–strain formulation for hydrate-bearing sediments 18310.3.2 DEM representation 19110.4 Coupled formulation 19510.5 Numerical simulations of the Nankai 2013 gas production test 20210.5.1 The Nankai gas production test overview 20210.5.2 Modeling procedure 20310.5.3 History matching of the 2013 Nankai production test 21010.5.4 Thermo–hydro–mechanical studies during the 2013 Nankai gas production test 21110.6 Concluding remarks 21310.7 Bibliography 214Chapter 11 Geochemical Aspects 219Wei-Li HONG and Malgorzata PESZYNSKA11.1 Introduction 21911.2 Basic principles 22011.2.1 Transport in the aqueous phase by advection and diffusion 22011.2.2 Numerical scheme for the advection–diffusion problem 22211.2.3 Transport of methane in aqueous phase in the presence of gas hydrate phase 22311.2.4 Transport of methane and salt species, with hydrate presence 22511.3 Model framework 22611.4 Model validation and sensitivity tests 23011.5 Model application 23011.6 Concluding remarks 23911.7 Acknowledgments 23911.8 Bibliography 239Part 3 Geoscience and Industrial Applications 243Chapter 12 Biogeochemical Dynamics of the Giant Pockmark Regab 245Alexis DE PRUNELÉ, Karine OLU, Livio RUFFINE, Hélène ONDRÉAS,Jean-Claude CAPRAIS, Germain BAYON, Anne-Sophie ALIX, Julie Le BRUCHEC and Louis GÉLI12.1 Introduction 24512.2 Location of the pockmark 24612.2.1 The pockmark Regab: hydrocarbon emission and morphology 24712.3 Megafauna distribution on Regab pockmark in relation to fluid chemistry 25012.3.1 Megafauna distribution on the Regab pockmark 25012.3.2 Mytilid habitats 25212.3.3 Bacterial mat habitat 25512.3.4 Vesicomyid habitats 25812.4 General conclusion on the megafauna distribution on the Regab pockmark in relation to fluid chemistry 26312.5 Bibliography 264Chapter 13 Roles of Gas Hydrates for CO2 Geological Storage Purposes 267André BURNOL13.1 Introduction 26713.2 Hydrate trapping of CO2 in subsurfaces (onshore, offshore and deep offshore cases) 26913.2.1 Case of migration of CO2 within the overburden 26913.2.2 Case of natural gas hydrates exploitation using CO2 injection 27013.2.3 Role of mixed gas hydrates in the “deep offshore” CO2 storage option 27213.3 CO2 deep offshore storage capacity in the French and Spanish EEZs 27613.4 Summary and prospects 28113.5 Bibliography 281Chapter 14 Hydrate-Based Removal of CO2 from CH4 + CO2 Gas Streams 285Daniel BROSETA, Christophe DICHARRY and Jean-Philippe TORRÉ14.1 Introduction 28514.2 Laboratory experiments of gas capture and separation by means of gas hydrates 29014.2.1 Batch experiments 29214.2.2 Semibatch experiments 29514.2.3 Continuous separation experiments 29514.3 Metrics of CO2 separation 29514.4 Results from experiments of CO2 removal from CO2/CH4 gas mixtures 30014.4.1 Pure water and water with surfactant additives 30014.4.2 THF and other sII hydrate-forming additives 30114.4.3 TBAB, TBPB and other semiclathrate-forming additives 30314.5 Routes to enhance the removal of CO2 from CO2/CH4 gas mixtures 30714.6 Concluding remarks 30914.7 Bibliography 309Chapter 15 Use of Hydrates for Cold Storage and Distribution in Refrigeration and Air-Conditioning Applications 315Anthony DELAHAYE, Laurence FOURNAISON and Didier DALMAZZONE15.1 Introduction 31515.2 Hydrate systems for cool storage and distribution 31715.2.1 Refrigerant gas hydrate applied to cool storage 31715.2.2 CO2 hydrates applied to cool storage and distribution 31815.2.3 Quaternary salt hydrates for cool storage and distribution 31915.2.4 Other hydrates applied to cool storage and distribution 32015.3 Criteria for use of hydrates in refrigeration 32115.3.1 Thermodynamic criterion 32215.3.2 Flow criterion 32515.3.3 Thermal criterion 33115.3.4 Kinetic criterion 33215.3.5 Energy criterion 33415.4 Hydrate applications in refrigeration and air conditioning 33515.4.1 Slurry generation methods 33515.4.2 Examples of hydrate-based refrigeration systems 33615.5 Conclusion 34115.6 Bibliography 342List of Authors 359Index 363