Hoppa till sidans huvudinnehåll

Del 164

Galois Representations and (Phi, Gamma)-Modules

Inbunden, Engelska, 2017

Av Peter Schneider, Germany) Schneider, Peter (Westfalische Wilhelms-Universitat Munster

929 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Understanding Galois representations is one of the central goals of number theory. Around 1990, Fontaine devised a strategy to compare such p-adic Galois representations to seemingly much simpler objects of (semi)linear algebra, the so-called etale (phi, gamma)-modules. This book is the first to provide a detailed and self-contained introduction to this theory. The close connection between the absolute Galois groups of local number fields and local function fields in positive characteristic is established using the recent theory of perfectoid fields and the tilting correspondence. The author works in the general framework of Lubin-Tate extensions of local number fields, and provides an introduction to Lubin-Tate formal groups and to the formalism of ramified Witt vectors. This book will allow graduate students to acquire the necessary basis for solving a research problem in this area, while also offering researchers many of the basic results in one convenient location.

Produktinformation

  • Utgivningsdatum2017-04-20
  • Mått158 x 235 x 14 mm
  • Vikt360 g
  • FormatInbunden
  • SpråkEngelska
  • SerieCambridge Studies in Advanced Mathematics
  • Antal sidor156
  • FörlagCambridge University Press
  • ISBN9781107188587

Tillhör följande kategorier