Hoppa till sidans huvudinnehåll

Del 391

Fusion Systems in Algebra and Topology

Häftad, Engelska, 2011

Av Michael Aschbacher, Radha Kessar, Bob Oliver

929 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. This book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians.

Produktinformation

  • Utgivningsdatum2011-08-25
  • Mått150 x 226 x 18 mm
  • Vikt490 g
  • FormatHäftad
  • SpråkEngelska
  • SerieLondon Mathematical Society Lecture Note Series
  • Antal sidor330
  • FörlagCambridge University Press
  • ISBN9781107601000

Tillhör följande kategorier