Fractional Dynamics on Networks and Lattices
Inbunden, Engelska, 2019
Av Thomas Michelitsch, Alejandro Perez Riascos, Bernard Collet, Andrzej Nowakowski, Franck Nicolleau, France) Michelitsch, Thomas (Institut Jean le Rond d'Alembert, Sorbonne University, Alejandro Perez (Institute of Physics at the Universidad Nacional Autonoma de Mexico) Riascos, France) Collet, Bernard (Institut Jean le Rond d'Alembert, Sorbonne University, UK) Nowakowski, Andrzej (University of Sheffield, UK) Nicolleau, Franck (University of Sheffield
2 309 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.This book analyzes stochastic processes on networks and regular structures such as lattices by employing the Markovian random walk approach.Part 1 is devoted to the study of local and non-local random walks. It shows how non-local random walk strategies can be defined by functions of the Laplacian matrix that maintain the stochasticity of the transition probabilities. A major result is that only two types of functions are admissible: type (i) functions generate asymptotically local walks with the emergence of Brownian motion, whereas type (ii) functions generate asymptotically scale-free non-local “fractional” walks with the emergence of Lévy flights.In Part 2, fractional dynamics and Lévy flight behavior are analyzed thoroughly, and a generalization of Pólya's classical recurrence theorem is developed for fractional walks. The authors analyze primary fractional walk characteristics such as the mean occupation time, the mean first passage time, the fractal scaling of the set of distinct nodes visited, etc. The results show the improved search capacities of fractional dynamics on networks.
Produktinformation
- Utgivningsdatum2019-04-12
 - Mått160 x 239 x 23 mm
 - Vikt612 g
 - FormatInbunden
 - SpråkEngelska
 - Antal sidor336
 - FörlagISTE Ltd and John Wiley & Sons Inc
 - ISBN9781786301581