bokomslag Foundations of Rule Learning
Data & IT

Foundations of Rule Learning

Johannes Fürnkranz Dragan Gamberger Nada Lavra?

869:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 334 sidor
  • 2014
Rules - the clearest, most explored and best understood form of knowledge representation - are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning. The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data.
  • Författare: Johannes Fürnkranz, Dragan Gamberger, Nada Lavra?
  • Format: Previously published in hardcover
  • ISBN: 9783642430466
  • Språk: Engelska
  • Antal sidor: 334
  • Utgivningsdatum: 2014-12-14
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG