Finite-Dimensional Division Algebras over Fields
Inbunden, Engelska, 1996
689 kr
Beställningsvara. Skickas inom 10-15 vardagar. Fri frakt för medlemmar vid köp för minst 249 kr.
Finns i fler format (1)
Finite-Dimensional Division Algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts; they arose first in the study of the so-called "multiplication algebras of Riemann matrices". The largest part of the book is the fifth chapter, dealing with involutorial simple algebras of finite dimension over a field. Of particular interest are the Jordan algebras determined by these algebras with involution;their structure is discussed. Two important concepts of these algebras with involution are the universal enveloping algebras and the reduced norm.
Produktinformation
- Utgivningsdatum1996-10-21
- Mått155 x 235 x undefined mm
- FormatInbunden
- SpråkEngelska
- Antal sidor284
- FörlagSpringer-Verlag Berlin and Heidelberg GmbH & Co. KG
- ISBN9783540570295