bokomslag Federated Learning Systems
2629:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 165 sidor
  • 2025
This book dives deep into both industry implementations and cutting-edge research driving theFederated Learning(FL) landscape forward. FL enables decentralized model training, preserves data privacy, and enhances security without relying on centralized datasets. Industry pioneers like NVIDIA have spearheaded the development of general-purpose FL platforms, revolutionizing how companies harness distributed data. Alternately, for medical AI, FL platforms, such as FedBioMed, enable collaborative model development across healthcare institutions to unlock massive value. Research advances in PETs highlight ongoing efforts to ensure that FL is robust, secure, and scalable. Looking ahead, federated learning could transform public health by enabling global collaboration on disease prevention while safeguarding individual privacy. From recommendation systems to cybersecurity applications, FL is poised to reshape multiple domains, driving a future where collaboration and privacy coexist seamlessly.
  • Författare: Muhammad Habib Ur Rehman, Mohamed Medhat Gaber, Muhammad Habib Ur Rehman
  • Format: Inbunden
  • ISBN: 9783031788406
  • Språk: Engelska
  • Antal sidor: 165
  • Utgivningsdatum: 2025-04-27
  • Förlag: Springer International Publishing AG