Explanatory Model Analysis
Explore, Explain, and Examine Predictive Models
Häftad, Engelska, 2022
Av Przemyslaw Biecek, Tomasz Burzykowski, Belgium) Burzykowski, Tomasz (Hasselt University
889 kr
Finns i fler format (1)
Produktinformation
- Utgivningsdatum2022-09-26
- Mått156 x 234 x 20 mm
- Vikt460 g
- FormatHäftad
- SpråkEngelska
- SerieChapman & Hall/CRC Data Science Series
- Antal sidor324
- FörlagTaylor & Francis Ltd
- ISBN9780367693923
Tillhör följande kategorier
Przemyslaw Biecek is a professor in human-oriented machine learning at the Warsaw University of Technology and Principal Data Scientist in Samsung R&D Institute Poland. His main research project is DrWhy.AI - tools and methods for exploration, explanation, visualisation, and debugging of predictive models. Tomasz Burzykowski is professor of biostatistics at Hasselt University and Vice-President for Research at International Drug Development Institute (IDDI). He has published extensively on applications of statistics in medicine and biology.
- I. Introduction 1. Introduction. 2. Model Development. 3. Do-it-yourself. 4. Datasets and models. II. Instance Level. 5. Introduction to Instance-level Exploration. 6. Break-down Plots for Additive Attributions. 7. Break-down Plots for Interactions. 8. Shapley Additive Explanations (SHAP) for Average Attributions. 9. Local Interpretable Model-agnostic Explanations (LIME). 10. Ceteris-paribus Profiles. 11. Ceteris-paribus Oscillations. 12. Local-diagnostics Plots. 13. Summary of Instance-level Exploration. III. Dataset Level. 14. Introduction to Dataset-level Exploration. 15. Model-performance Measures. 16. Variable-importance Measures. 17. Partial-dependence Profiles. 18. Local-dependence and Accumulated-dependence Profiles. 19. Residual Diagnostics Plots. 20. Summary of Model-level Exploration. IV. Use-cases. 21. FIFA 19.
"The structure is well-conceived, with chapters consisting in five sections: intuition, method, example, pros and cons, and code snippets. I sense a teacher’s long experience behind these choices.The chapters contain good mathematical detail on the techniques discussed, but the theory is well balanced with examples and code.The visualizations are great. Often, the gist of a particular technique, and it’s practical, interpretive value, can be gleaned from the visualizations threading through the chapter, along with captions. The authors did a really nice job with this.The rationale for the book is well-described.The discussion of techniques seems both comprehensive (given my sense of the field) and helpfully specific, both at the instance and the dataset levels."-Jeff Webb, University of Utah"The authors are doing a very good job in addressing the potential readers, by providing a clean presentation and practical guidance on diagnostic graphical tools…Having an ‘intuition section’ at the beginning of each chapter is very useful."-Riccardo De Bin, University of Oslo"The book provides a unified presentation of model exploration, visualization, comparison and diagnostics of different machine learning algorithms…This book would be found useful by both students as well as practitioners who analyze their own data. Books including real data examples in R and in Python are needed in this area. (It) will serve as a reference, especially for analyses done with dalex or archivist R package (and )can serve as a textbook of data science courses in many fields including computer science, social sciences, economics and other."-Patricia Martinkova, Institute of Computer Science of the Czech Academy of Sciences"There are books that focus on prediction models, for example the element of statistical learning and an introduction to statistical learning but these are not focused on the evaluation of predictive models which is the main focus on the proposed book and its main advantage. As predictive models become very popular in the last years, such a book that focus on the evaluation of the models and model diagnostics can be very popular."-Ziv Shkedy, Data Science Institute, Hasselt University, Belgium'The book is clearly and consistently structured and well–written. The graphics are explained conceptually and mathematically. There are chapter sections on the pros and cons of what is proposed, where the authors are generally properly cautious and recommend a mixture of approaches.'- Antony Unwin, International Statistical Review, 2021 Volume 89, Issue 3
Mer från samma författare
ECML PKDD 2020 Workshops
Irena Koprinska, Michael Kamp, Annalisa Appice, Corrado Loglisci, Luiza Antonie, Albrecht Zimmermann, Riccardo Guidotti, Özlem Özgöbek, Rita P. Ribeiro, Ricard Gavaldà, João Gama, Linara Adilova, Yamuna Krishnamurthy, Pedro M. Ferreira, Donato Malerba, Ibéria Medeiros, Michelangelo Ceci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras, Peter Christen, Eirini Ntoutsi, Erich Schubert, Arthur Zimek, Anna Monreale, Przemyslaw Biecek, Salvatore Rinzivillo, Benjamin Kille, Andreas Lommatzsch, Jon Atle Gulla, Ozlem Ozgobek, Ricard Gavalda
1 309 kr
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
Michael Kamp, Irena Koprinska, Adrien Bibal, Tassadit Bouadi, Benoît Frénay, Luis Galárraga, José Oramas, Linara Adilova, Yamuna Krishnamurthy, Bo Kang, Christine Largeron, Jefrey Lijffijt, Tiphaine Viard, Pascal Welke, Massimiliano Ruocco, Erlend Aune, Claudio Gallicchio, Gregor Schiele, Franz Pernkopf, Michaela Blott, Holger Fröning, Günther Schindler, Riccardo Guidotti, Anna Monreale, Salvatore Rinzivillo, Przemyslaw Biecek, Eirini Ntoutsi, Mykola Pechenizkiy, Bodo Rosenhahn, Christopher Buckley, Daniela Cialfi, Pablo Lanillos, Maxwell Ramstead, Tim Verbelen, Pedro M. Ferreira, Giuseppina Andresini, Donato Malerba, Ibéria Medeiros, Philippe Fournier-Viger, M. Saqib Nawaz, Sebastian Ventura, Meng Sun, Min Zhou, Valerio Bitetta, Ilaria Bordino, Andrea Ferretti, Francesco Gullo, Giovanni Ponti, Lorenzo Severini, Rita Ribeiro, João Gama, Ricard Gavaldà, Lee Cooper, Naghmeh Ghazaleh, Jonas Richiardi, Damian Roqueiro, Diego Saldana Miranda, Konstantinos Sechidis, Guilherme Graça, Benoit Frenay, Luis Galarraga, Jose Oramas
1 269 kr
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
Michael Kamp, Irena Koprinska, Adrien Bibal, Tassadit Bouadi, Benoît Frénay, Luis Galárraga, José Oramas, Linara Adilova, Yamuna Krishnamurthy, Bo Kang, Christine Largeron, Jefrey Lijffijt, Tiphaine Viard, Pascal Welke, Massimiliano Ruocco, Erlend Aune, Claudio Gallicchio, Gregor Schiele, Franz Pernkopf, Michaela Blott, Holger Fröning, Günther Schindler, Riccardo Guidotti, Anna Monreale, Salvatore Rinzivillo, Przemyslaw Biecek, Eirini Ntoutsi, Mykola Pechenizkiy, Bodo Rosenhahn, Christopher Buckley, Daniela Cialfi, Pablo Lanillos, Maxwell Ramstead, Tim Verbelen, Pedro M. Ferreira, Giuseppina Andresini, Donato Malerba, Ibéria Medeiros, Philippe Fournier-Viger, M. Saqib Nawaz, Sebastian Ventura, Meng Sun, Min Zhou, Valerio Bitetta, Ilaria Bordino, Andrea Ferretti, Francesco Gullo, Giovanni Ponti, Lorenzo Severini, Rita Ribeiro, João Gama, Ricard Gavaldà, Lee Cooper, Naghmeh Ghazaleh, Jonas Richiardi, Damian Roqueiro, Diego Saldana Miranda, Konstantinos Sechidis, Guilherme Graça, Benoit Frenay, Luis Galarraga, Jose Oramas
2 039 kr
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
Irena Koprinska, Paolo Mignone, Riccardo Guidotti, Szymon Jaroszewicz, Holger Fröning, Francesco Gullo, Pedro M. Ferreira, Damian Roqueiro, Gaia Ceddia, Slawomir Nowaczyk, João Gama, Rita Ribeiro, Ricard Gavaldà, Elio Masciari, Zbigniew Ras, Ettore Ritacco, Francesca Naretto, Andreas Theissler, Przemyslaw Biecek, Wouter Verbeke, Gregor Schiele, Franz Pernkopf, Michaela Blott, Ilaria Bordino, Ivan Luciano Danesi, Giovanni Ponti, Lorenzo Severini, Annalisa Appice, Giuseppina Andresini, Ibéria Medeiros, Guilherme Graça, Lee Cooper, Naghmeh Ghazaleh, Jonas Richiardi, Diego Saldana, Konstantinos Sechidis, Arif Canakoglu, Sara Pido, Pietro Pinoli, Albert Bifet, Sepideh Pashami, Holger Froning
1 499 kr
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
Irena Koprinska, Paolo Mignone, Riccardo Guidotti, Szymon Jaroszewicz, Holger Fröning, Francesco Gullo, Pedro M. Ferreira, Damian Roqueiro, Gaia Ceddia, Slawomir Nowaczyk, João Gama, Rita Ribeiro, Ricard Gavaldà, Elio Masciari, Zbigniew Ras, Ettore Ritacco, Francesca Naretto, Andreas Theissler, Przemyslaw Biecek, Wouter Verbeke, Gregor Schiele, Franz Pernkopf, Michaela Blott, Ilaria Bordino, Ivan Luciano Danesi, Giovanni Ponti, Lorenzo Severini, Annalisa Appice, Giuseppina Andresini, Ibéria Medeiros, Guilherme Graça, Lee Cooper, Naghmeh Ghazaleh, Jonas Richiardi, Diego Saldana, Konstantinos Sechidis, Arif Canakoglu, Sara Pido, Pietro Pinoli, Albert Bifet, Sepideh Pashami, Holger Froning
1 099 kr
Artificial Intelligence. ECAI 2023 International Workshops
Sławomir Nowaczyk, Przemysław Biecek, Neo Christopher Chung, Mauro Vallati, Paweł Skruch, Joanna Jaworek-Korjakowska, Simon Parkinson, Alexandros Nikitas, Martin Atzmüller, Tomáš Kliegr, Ute Schmid, Szymon Bobek, Nada Lavrac, Marieke Peeters, Roland van Dierendonck, Saskia Robben, Eunika Mercier-Laurent, Gülgün Kayakutlu, Mieczyslaw Lech Owoc, Karl Mason, Abdul Wahid, Pierangela Bruno, Francesco Calimeri, Francesco Cauteruccio, Giorgio Terracina, Diedrich Wolter, Jochen L. Leidner, Michael Kohlhase, Vania Dimitrova, Slawomir Nowaczyk, Przemyslaw Biecek, Pawel Skruch, Martin Atzmuller, Tomas Kliegr, S¿awomir Nowaczyk, Tomá¿ Kliegr, Roland van Dierendonck, Przemys¿aw Biecek, Pawe¿ Skruch
1 849 kr
Artificial Intelligence. ECAI 2023 International Workshops
Sławomir Nowaczyk, Przemysław Biecek, Neo Christopher Chung, Mauro Vallati, Paweł Skruch, Joanna Jaworek-Korjakowska, Simon Parkinson, Alexandros Nikitas, Martin Atzmüller, Tomáš Kliegr, Ute Schmid, Szymon Bobek, Nada Lavrac, Marieke Peeters, Roland van Dierendonck, Saskia Robben, Eunika Mercier-Laurent, Gülgün Kayakutlu, Mieczyslaw Lech Owoc, Karl Mason, Abdul Wahid, Pierangela Bruno, Francesco Calimeri, Francesco Cauteruccio, Giorgio Terracina, Diedrich Wolter, Jochen L. Leidner, Michael Kohlhase, Vania Dimitrova, Slawomir Nowaczyk, Przemyslaw Biecek, Pawel Skruch, Martin Atzmuller, Tomas Kliegr, S¿awomir Nowaczyk, Tomá¿ Kliegr, Roland van Dierendonck, Przemys¿aw Biecek, Pawe¿ Skruch
1 629 kr
Du kanske också är intresserad av
ECML PKDD 2020 Workshops
Irena Koprinska, Michael Kamp, Annalisa Appice, Corrado Loglisci, Luiza Antonie, Albrecht Zimmermann, Riccardo Guidotti, Özlem Özgöbek, Rita P. Ribeiro, Ricard Gavaldà, João Gama, Linara Adilova, Yamuna Krishnamurthy, Pedro M. Ferreira, Donato Malerba, Ibéria Medeiros, Michelangelo Ceci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras, Peter Christen, Eirini Ntoutsi, Erich Schubert, Arthur Zimek, Anna Monreale, Przemyslaw Biecek, Salvatore Rinzivillo, Benjamin Kille, Andreas Lommatzsch, Jon Atle Gulla, Ozlem Ozgobek, Ricard Gavalda
1 309 kr
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
Michael Kamp, Irena Koprinska, Adrien Bibal, Tassadit Bouadi, Benoît Frénay, Luis Galárraga, José Oramas, Linara Adilova, Yamuna Krishnamurthy, Bo Kang, Christine Largeron, Jefrey Lijffijt, Tiphaine Viard, Pascal Welke, Massimiliano Ruocco, Erlend Aune, Claudio Gallicchio, Gregor Schiele, Franz Pernkopf, Michaela Blott, Holger Fröning, Günther Schindler, Riccardo Guidotti, Anna Monreale, Salvatore Rinzivillo, Przemyslaw Biecek, Eirini Ntoutsi, Mykola Pechenizkiy, Bodo Rosenhahn, Christopher Buckley, Daniela Cialfi, Pablo Lanillos, Maxwell Ramstead, Tim Verbelen, Pedro M. Ferreira, Giuseppina Andresini, Donato Malerba, Ibéria Medeiros, Philippe Fournier-Viger, M. Saqib Nawaz, Sebastian Ventura, Meng Sun, Min Zhou, Valerio Bitetta, Ilaria Bordino, Andrea Ferretti, Francesco Gullo, Giovanni Ponti, Lorenzo Severini, Rita Ribeiro, João Gama, Ricard Gavaldà, Lee Cooper, Naghmeh Ghazaleh, Jonas Richiardi, Damian Roqueiro, Diego Saldana Miranda, Konstantinos Sechidis, Guilherme Graça, Benoit Frenay, Luis Galarraga, Jose Oramas
1 269 kr