bokomslag Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance
Data & IT

Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance

Tom Rutkowski

Pocket

2259:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 167 sidor
  • 2022
The book proposes techniques, with an emphasis on the financial sector, which will make recommendation systems both accurate and explainable. The vast majority of AI models work like black box models. However, in many applications, e.g., medical diagnosis or venture capital investment recommendations, it is essential to explain the rationale behind AI systems decisions or recommendations. Therefore, the development of artificial intelligence cannot ignore the need for interpretable, transparent, and explainable models. First, the main idea of the explainable recommenders is outlined within the background of neuro-fuzzy systems. In turn, various novel recommenders are proposed, each characterized by achieving high accuracy with a reasonable number of interpretable fuzzy rules. The main part of the book is devoted to a very challenging problem of stock market recommendations. An original concept of the explainable recommender, based on patterns from previous transactions, is developed; it recommends stocks that fit the strategy of investors, and its recommendations are explainable for investment advisers.
  • Författare: Tom Rutkowski
  • Format: Pocket/Paperback
  • ISBN: 9783030755232
  • Språk: Engelska
  • Antal sidor: 167
  • Utgivningsdatum: 2022-06-09
  • Förlag: Springer Nature Switzerland AG