Environmental Physics
Sustainable Energy and Climate Change
Häftad, Engelska, 2011
Av Egbert Boeker, Rienk van Grondelle, Egbert (Free University of Amsterdam) Boeker, Rienk (Free University of Amsterdam) van Grondelle, Rienk Van Grondelle, Boeker
899 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.This thoroughly revised and updated third edition focuses on the utilization of sustainable energy and mitigating climate change, serving as an introduction to physics in the context of societal problems. A distinguishing feature of the text is the discussion of spectroscopy and spectroscopic methods as a crucial means to quantitatively analyze and monitor the condition of the environment, the factors determining climate change, and all aspects of energy conversion.This textbook will be invaluable to students in physics and related subjects, and supplementary materials are available on a companion website: http://www.nat.vu.nl/environmentalphysicsInstructor support material is available at: http://booksupport.wiley.com
Produktinformation
- Utgivningsdatum2011-08-26
- Mått170 x 244 x 23 mm
- Vikt712 g
- SpråkEngelska
- Antal sidor480
- Upplaga3
- FörlagJohn Wiley & Sons Inc
- EAN9780470666760
Tillhör följande kategorier
Egbert Boekeris a retired Professor from the Free University of Amsterdam with a career in which he taught virtually all of the undergraduate courses in physics. Rienk van Grondelle is a Professor in the Department of Biophysics and Physics of Complex Systems at the Free University of Amsterdam. He is performing research in biophysics and teaching not only to physics students but also to biology students. He is a member of the Royal Netherlands Academy of Sciences.
- Preface xiiiAcknowledgements xv1 Introduction 11.1 A Sustainable Energy Supply 11.2 The Greenhouse Effect and Climate Change 31.3 Light Absorption in Nature as a Source of Energy 41.4 The Contribution of Science: Understanding, Modelling and Monitoring 5Exercises 6References 62 Light and Matter 72.1 The Solar Spectrum 72.1.1 Radiation from a Black Body 72.1.2 Emission Spectrum of the Sun 92.2 Interaction of Light with Matter 122.2.1 Electric Dipole Moments of Transitions 122.2.2 Einstein Coefficients 142.2.3 Absorption of a Beam of Light: Lambert-Beer’s Law 162.3 Ultraviolet Light and Biomolecules 192.3.1 Spectroscopy of Biomolecules 202.3.2 Damage to Life from Solar UV 212.3.3 The Ozone Filter as Protection 22Exercises 28References 283 Climate and Climate Change 313.1 The Vertical Structure of the Atmosphere 323.2 The Radiation Balance and the Greenhouse Effect 363.2.1 Simple Changes in the Radiation Balance 393.2.2 Radiation Transfer 413.2.3 A Simple Analytical Model 443.2.4 Radiative Forcing and Global Warming 453.2.5 The Greenhouse Gases 483.3 Dynamics in the Climate System 513.3.1 Horizontal Motion of Air 533.3.2 Vertical Motion of Ocean Waters 583.3.3 Horizontal Motion of Ocean Waters 593.4 Natural Climate Variability 593.5 Modelling Human-Induced Climate Change 623.5.1 The Carbon Cycle 633.5.2 Structure of Climate Modelling 663.5.3 Modelling the Atmosphere 673.5.4 A Hierarchy of Models 703.6 Analyses of IPCC, the Intergovernmental Panel on Climate Change 703.7 Forecasts of Climate Change 70Exercises 74References 764 Heat Engines 774.1 Heat Transfer and Storage 784.1.1 Conduction 794.1.2 Convection 824.1.3 Radiation 824.1.4 Phase Change 834.1.5 The Solar Collector 844.1.6 The Heat Diffusion Equation 874.1.7 Heat Storage 904.2 Principles of Thermodynamics 914.2.1 First and Second Laws 914.2.2 Heat and Work; Carnot Efficiency 954.2.3 Efficiency of a ‘Real’ Heat Engine 974.2.4 Second Law Efficiency 984.2.5 Loss of Exergy in Combustion 1014.3 Idealized Cycles 1034.3.1 Carnot Cycle 1034.3.2 Stirling Engine 1044.3.3 Steam Engine 1054.3.4 Internal Combustion 1074.3.5 Refrigeration 1104.4 Electricity as Energy Carrier 1134.4.1 Varying Grid Load 1144.4.2 Co-Generation of Heat and Electricity 1154.4.3 Storage of Electric Energy 1174.4.4 Transmission of Electric Power 1234.5 Pollution from Heat Engines 1254.5.1 Nitrogen Oxides Nox 1254.5.2 So2 1264.5.3 CO and CO2 1264.5.4 Aerosols 1274.5.5 Volatile Organic Compounds VOC 1284.5.6 Thermal Pollution 1294.5.7 Regulations 1294.6 The Private Car 1294.6.1 Power Needs 1304.6.2 Automobile Fuels 1314.6.3 Three-Way Catalytic Converter 1324.6.4 Electric Car 1334.6.5 Hybrid Car 1344.7 Economics of Energy Conversion 1344.7.1 Capital Costs 1344.7.2 Learning Curve 138Exercises 138References 1425 Renewable Energy 1455.1 Electricity from the Sun 1465.1.1 Varying Solar Input 1465.1.2 Electricity from Solar Heat: Concentrating Solar Power CSP 1505.1.3 Direct Conversion of Light into Electricity: Photovoltaics PV 1525.2 Energy from the Wind 1595.2.1 Betz Limit 1605.2.2 Aerodynamics 1625.2.3 Wind Farms 1655.2.4 Vertical Wind Profile 1655.2.5 Wind Statistics 1675.2.6 State of the Art and Outlook 1685.3 Energy from the Water 1695.3.1 Power from Dams 1695.3.2 Power from Flowing Rivers 1705.3.3 Power from Waves 1705.3.4 Power from the Tides 1745.4 Bio Energy 1755.4.1 Thermodynamics of Bio Energy 1755.4.2 Stability 1805.4.3 Solar Efficiency 1805.4.4 Energy from Biomass 1825.5 Physics of Photosynthesis 1835.5.1 Basics of Photosynthesis 1845.5.2 Light-Harvesting Antennas 1855.5.3 Energy Transfer Mechanism 1875.5.4 Charge Separation 1905.5.5 Flexibility and Disorder 1935.5.6 Photoprotection 1935.5.7 Research Directions 1955.6 Organic Photocells: the Grätzel Cell 1965.6.1 The Principle 1965.6.2 Efficiency 1995.6.3 New Developments and the Future 2025.6.4 Applications 2035.7 Bio Solar Energy 2035.7.1 Comparison of Biology and Technology 2045.7.2 Legacy Biochemistry 2075.7.3 Artificial Photosynthesis 2095.7.4 Solar Fuels with Photosynthetic Microorganisms: Two Research Questions 2135.7.5 Conclusion 213Exercises 215References 2176 Nuclear Power 2216.1 Nuclear Fission 2226.1.1 Principles 2226.1.2 Four Factor Formula 2266.1.3 Reactor Equations 2296.1.4 Stationary Reactor 2316.1.5 Time Dependence of a Reactor 2336.1.6 Reactor Safety 2346.1.7 Nuclear Explosives 2376.2 Nuclear Fusion 2386.3 Radiation and Health 2446.3.1 Definitions 2446.3.2 Norms on Exposure to Radiation 2456.3.3 Normal Use of Nuclear Power 2476.3.4 Radiation from Nuclear Accidents 2476.3.5 Health Aspects of Fusion 2476.4 Managing the Fuel Cycle 2486.4.1 Uranium Mines 2496.4.2 Enrichment 2496.4.3 Fuel Burnup 2526.4.4 Reprocessing 2526.4.5 Waste Management 2536.4.6 Nonproliferation 2566.5 Fourth Generation Nuclear Reactors 257Exercises 258References 2597 Dispersion of Pollutants 2617.1 Diffusion 2627.1.1 Diffusion Equation 2627.1.2 Point Source in Three Dimensions in Uniform Wind 2677.1.3 Effect of Boundaries 2697.2 Dispersion in Rivers 2707.2.1 One-Dimensional Approximation 2717.2.2 Influence of Turbulence 2757.2.3 Example: A Calamity Model for the Rhine River 2777.2.4 Continuous Point Emission 2787.2.5 Two Numerical Examples 2807.2.6 Improvements 2817.2.7 Conclusion 2827.3 Dispersion in Groundwater 2827.3.1 Basic Definitions 2837.3.2 Darcy’s Equations 2867.3.3 Stationary Applications 2907.3.4 Dupuit Approximation 2957.3.5 Simple Flow in a Confined Aquifer 2987.3.6 Time Dependence in a Confined Aquifer 3017.3.7 Adsorption and Desorption of Pollutants 3027.4 Mathematics of Fluid Dynamics 3047.4.1 Stress Tensor 3047.4.2 Equations of Motion 3087.4.3 Newtonian Fluids 3097.4.4 Navier-Stokes Equation 3107.4.5 Reynolds Number 3117.4.6 Turbulence 3137.5 Gaussian Plumes in the Air 3177.5.1 Statistical Analysis 3197.5.2 Continuous Point Source 3217.5.3 Gaussian Plume from a High Chimney 3227.5.4 Empirical Determination of the Dispersion Coefficients 3237.5.5 Semi-Empirical Determination of the Dispersion Parameters 3247.5.6 Building a Chimney 3257.6 Turbulent Jets and Plumes 3267.6.1 Dimensional Analysis 3287.6.2 Simple Jet 3297.6.3 Simple Plume 331Exercises 333References 3348 Monitoring with Light 3378.1 Overview of Spectroscopy 3378.1.1 Population of Energy Levels and Intensity of Absorption Lines 3418.1.2 Transition Dipole Moment: Selection Rules 3418.1.3 Linewidths 3428.2 Atomic Spectra 3458.2.1 One-Electron Atoms 3458.2.2 Many-Electron Atoms 3468.3 Molecular Spectra 3478.3.1 Rotational Transitions 3478.3.2 Vibrational Transitions 3498.3.3 Electronic Transitions 3538.4 Scattering 3598.4.1 Raman Scattering 3598.4.2 Resonance Raman Scattering 3608.4.3 Rayleigh Scattering 3618.4.4 Mie Scattering 3628.4.5 Scattering in the Atmosphere 3628.5 Remote Sensing by Satellites 3628.5.1 ENVISAT Satellite 3628.5.2 SCIAMACHY’s Operation 3628.5.3 Analysis 3648.5.4 Ozone Results 3688.6 Remote Sensing by Lidar 3688.6.1 Lidar Equation and DIAL 3698.6.2 Range-Resolved Cloud and Aerosol Optical Properties 371Exercises 376References 3779 The Context of Society 3799.1 Using Energy Resources 3809.1.1 Energy Consumption 3809.1.2 Energy Consumption and Resources 3829.1.3 Energy Efficiency 3839.1.4 Comparing Energy Resources 3849.1.5 Energy Options 3879.1.6 Conclusion 3889.2 Fresh Water 3899.3 Risks 3899.3.1 Small Concentrations of Harmful Chemicals 3909.3.2 Acceptable Risks 3929.3.3 Small Probability for a Large Harm 3939.3.4 Dealing with Uncertainties 3949.4 International Efforts 3969.4.1 Protection of the Ozone Layer 3969.4.2 Protection of Climate 3969.5 Global Environmental Management 3989.5.1 Self-Organized Criticality 3989.5.2 Conclusion 4019.6 Science and Society 4019.6.1 Nature of Science 4019.6.2 Control of Science 4029.6.3 Aims of Science 4029.6.4 A New Social Contract between Science and Society 404Exercises and social questions 405Social questions 405References 406Appendix A: Physical and Numerical Constants 409Appendix B: Vector Algebra 411Appendix C: Gauss, Delta and Error Functions 419Appendix D: Experiments in a Student’s Lab 423Appendix E: Web Sites 425Appendix F: Omitted Parts of the Second Edition 427Index 429