Energy Storage Materials Characterization, Volumes 1 - 2
Determining Properties and Performance
Inbunden, Engelska, 2025
Av Yongbing Tang, Wenjiao Yao, China) Tang, Yongbing (Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Science (CAS), China) Yao, Wenjiao (Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Science (CAS)
4 629 kr
Produktinformation
- Utgivningsdatum2025-02-05
- Mått170 x 244 x 15 mm
- Vikt680 g
- SpråkEngelska
- Antal sidor816
- FörlagWiley-VCH Verlag GmbH
- EAN9783527349661
Du kanske också är intresserad av
Electrochemical Energy Storage Devices
Yongbing Tang, Luojiang Zhang, China) Tang, Yongbing (Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Science (CAS), China) Zhang, Luojiang (Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Science (CAS)
2 109 kr
Tillhör följande kategorier
Yongbing Tang is a Professor at Shenzhen Institute of Advanced Technology (SIAT) and Director of Advanced Energy Storage Technology Research Center, Chinese Academy of Sciences (CAS). He is a recipient of the National Science Fund for Excellent Young Scholars. Dr. Wenjiao Yao, PhD, is an Associate Researcher at the Shenzhen Institute of Advanced Technology, CAS. Her research interest covers the design and optimization of energy storage materials as well as their structure-property relationship and working mechanisms.
- Volume IPreface xiii1 Introduction 1Bifa Ji, Xin Lei, Rui Yang, and Yongbing Tang1.1 Energy 11.1.1 Energy Utilization and Development Tendency 21.1.2 Forms of Energy Storage and Electrochemical Energy Storage 41.1.3 The Target and Key Problem of Energy Storage Materials 51.1.4 The Analysis Method Summary 81.2 Electrochemical Techniques in Battery Research 111.2.1 Charge/Discharge Measurement 111.2.2 Cyclic Voltammetry 151.2.3 Electrochemical Impedance Spectroscopy (EIS) 181.2.4 Electrochemical Measurements of Diffusion Coefficient 21References 23Part I X-ray Techniques 272 X-ray Diffraction 29Xuewu Ou2.1 Introduction of X-ray Diffraction 292.1.1 Qualitative Analysis 302.1.2 Quantitative Analysis 302.1.3 Crystallinity Analysis 312.1.4 Residual Stress Determination 312.1.5 Determination of Grain Size 312.1.6 Lattice Parameter Determination 322.2 Working Principle and Configuration of X-ray Diffraction 322.2.1 Working Principle of X-ray Diffraction 322.2.2 The Basic Configuration of X-ray Diffraction 342.2.2.1 X-ray Generator 342.2.2.2 Goniometer 352.2.2.3 Recorder 352.2.3 Different Types of XRD Testing Techniques 352.2.3.1 Single Crystal Diffraction and Polycrystalline Diffraction 352.2.3.2 Conventional X-ray Diffraction and Small-Angle Diffraction 362.3 Applications of X-ray Diffraction in Electrochemical Energy Storage 362.3.1 Applications of Traditional XRD in Electrochemical Energy Storage 362.3.1.1 Crystal Structure Characterization of Electrode Materials 372.3.1.2 Study on Electrochemical Reaction Mechanism 392.3.1.3 Developing New Electrode Materials 402.3.2 In Situ XRD and Its Application in Electrochemical Energy Storage 422.3.2.1 Principle and Basic Configuration of In Situ XRD 422.3.2.2 Applications of In Situ XRD in Energy Storage Materials 432.4 Summary and Prospects 44References 453 X-ray Absorption Spectroscopy 49Pinit Kidkhunthod, Jintara Padchasri, Sumeth Siriroj, Amorntep Montreeuppathum, Yingyot Poo-arporn, and Sarayut Tunmee3.1 Theory of XAS 493.1.1 X-ray Absorption Near Edge Structure (XANES) 503.1.1.1 Pre-edge Region 513.1.1.2 Absorption Edge 513.1.1.3 XANES Spectra 513.1.2 Extended X-ray Absorption Fine Structure (EXAFS) 513.1.3 Summary of XAS: Pros and Cons 543.2 XAS Beamlines 543.3 Ex Situ and In Situ (Operando) Studies on the Investigation of a Battery at Work 583.4 Case Studies in Battery Materials 603.4.1 Ex Situ Studies of the Effect of Ni Content in Lithium Nickel Borate Glasses Electrode 603.4.2 In situ studies of Dynamic Phase Transition in Olivine Cathode for Li-Ion Batteries 62References 644 Photoemission Spectroscopy for Energy Storage Materials 67Hideki Nakajima4.1 Introduction 674.2 Basic Principles 694.2.1 Background 694.2.2 XPS Overview 714.3 Applications to Energy Storage Materials 754.3.1 Laboratory-based (Conventional) XPS 754.3.2 Laboratory-based HAX PES 784.3.3 SR-based PES Including HAX PES and Related Techniques 804.3.4 NAP PES in the SOX range 834.3.5 NAP PES in the HAX Range 874.4 Summary and Prospect 89References 905 Application of X-ray Pair Distribution Function to Batteries 99Chong Chen5.1 Introduction 995.2 Principles and Methods 1005.2.1 Total Scattering Conversion 1025.2.2 Computational Analysis 1055.2.2.1 Real-Space Rietveld Method 1055.2.2.2 Reverse Monte Carlo (RMC) Simulation 1065.2.2.3 DFT/Molecular Dynamics Coupling 1085.2.3 Power of PDF Methods 1095.2.3.1 Defects and Local Disorders 1095.2.3.2 Nanomaterials 1105.2.3.3 Amorphous or Glassy Solids 1135.3 Applications in Electrochemical Energy Storage 1155.3.1 Static Local Structure in Electrode Materials 1165.3.2 Dynamically Evolved Local Structure under Battery Operation 1175.3.3 In Situ PDF Measurement for Operating Battery 1195.4 Concluding Remarks 120Acknowledgments 121References 1216 X-ray Fluorescence Microscopy 127Xuewu Ou6.1 The Introduction of X-ray Fluorescence 1276.2 The Working Principle and Equipment Configuration of X-ray Fluorescence 1286.2.1 The Working Principle of X-ray Fluorescence 1286.2.2 Basic Configuration of X-ray Fluorescence 1306.2.3 Handheld XRF Spectrometer 1306.2.4 The Development Trends of XRF Spectrometer 1316.3 Applications of X-ray Fluorescence Spectrometer in Energy Storage Materials 1326.3.1 Application of Conventional X-ray Fluorescence Spectrometer in Energy Storage Materials 1326.3.2 Application of In Situ Synchrotron Radiation XRF in Energy Storage Materials 1356.4 Summary and Prospect 138References 1397 X-ray Tomography 141Qirong Liu, Yunjie Lin, and Xinyu Yang7.1 Introduction 1417.2 General Fundamentals of XRT 1427.2.1 Attenuation Contrast-based XRT 1427.2.2 Phase Contrast-based XRT 1447.3 Applications of XRT in the Field of Electrochemical Energy Storage 1457.3.1 Structural and Compositional Evolution 1467.3.2 Electrochemical Dynamics 1497.3.3 Device Degradation 1507.4 Concluding Remarks 152References 1538 Transmission X-ray Microscopy 155Xiao Zheng8.1 Introduction 1558.2 Basic Principles of Transmission X-ray Microscopy 1568.3 Morphology and Chemical Mapping of Energy Storage Materials by Txm 1588.3.1 TXM of the Galvanostatic Growth of PbSO 4 on Pb 1588.3.2 TXM of the Cu 6 Sn 5 Anode 1598.3.3 TXM of the Co 3 O 4 /Graphene Composite and Sodium Titanate 1618.3.4 TXM of Sulfur Composite Cathode 1628.3.5 TXM of Discharge Products of Li–O 2 Batteries 1638.3.6 TXM of Discharge Products of Na–O 2 Batteries 1668.4 Applications of In-situ TXM in Energy Storage Materials 1688.4.1 In-situ TXM of Lithium Anodes 1688.4.2 In-situ TXM of Ge and Ge 0.9 Se 0.1 Anodes 1708.4.3 In-situ TXM of Sn and Sn-Containing Compound Anodes 1748.4.4 In-situ TXM of Zn Anode 1808.4.5 In-situ TXM of Li 2 MnO 3 ⋅LiMO 2 cathode 1818.4.6 In-situ TXM of Sulfur Cathodes 1828.5 Summary and Prospect 185References 1869 Coherent X-ray Diffractive Imaging 195Qirong Liu and Yuhan Liu9.1 Introduction 1959.2 General Fundamentals of CXDI Techniques 1969.2.1 Working Principle 1969.2.2 Phase Problem 1979.2.3 Phase Retrieval Algorithms 1999.2.4 CXDI Methods 2009.3 The Application of CXDI Techniques in Electrochemical Field 2039.3.1 Phase Transformation 2039.3.2 Structure and Strain Evolution 2059.3.3 Degradation Mechanism 2079.4 Concluding Remarks 209References 209Part II Neutron Techniques 21310 Neutron Techniques 215XuXu Wang, Luan Fang, Zhuomei Wu, Ruxiu He, Jinhui Li, Shuang Liu, and Ping Nie10.1 Introduction 21510.2 Basic Principles 21710.3 Application on Energy Storage Materials 21910.3.1 Lithium-ion Batteries 22110.3.1.1 Neutron Powder Diffraction 22310.3.1.2 Small and Ultra-small Angle Neutron Scattering 22810.3.1.3 Neutron Reflection 23010.3.1.4 Neutron Imaging 23010.3.1.5 Neutron Depth Profile 23110.3.2 Sodium-ion Batteries 23310.3.2.1 Cathode Materials 23310.3.2.2 Neutron Diffraction 23310.3.2.3 In situ Neutron Diffraction 23810.3.2.4 Neutron Scattering 24010.3.2.5 Anode Materials 24010.3.2.6 In situ Small-angle Neutron Scattering 24210.3.2.7 Solid State and Liquid Electrolytes 24210.3.2.8 In Situ Neutron Diffraction 24310.3.3 Potassium-ion Batteries 24410.3.3.1 Cathode Materials 24510.3.3.2 Anode Materials 24510.3.3.3 Electrolytes 24710.3.4 Other Battery Systems 24810.3.4.1 Magnesium-ion Batteries 24810.3.4.2 Zinc-ion Batteries 25010.3.4.3 Calcium-ion Batteries 25110.3.4.4 Aluminum-ion Batteries 25110.4 Summary and Prospect 251Author Contributions 253References 25311 Neutron Diffraction for Energy Storage Materials 263Sichen Jiao, Xuelong Wang, and Xiqian Yu11.1 General Background and Introduction 26311.2 Overview of Neutron as a Probe of Structural Characterization 26511.2.1 Neutron’s Strength in Structural Characterization 26511.2.2 Review of Basic Concepts in Neutron Scattering 26611.2.3 Theoretical Background for Neutron Diffraction and Total Scattering 26711.3 Ex situ Neutron Structural Characterization 27011.3.1 Average Structure 27011.3.1.1 Crystalline Structure 27111.3.1.2 Magnetic Structure 27511.3.1.3 Diffusion Pathway 27811.3.2 Local Structure 28111.4 In situ Structure Detection by Neutron 28611.5 Summary and Outlook 292References 29312 Neutron Scattering 299Qingguang Pan12.1 Introduction 29912.2 Basic Principles 30112.2.1 Neutron Production 30112.2.2 Neutron Radiation 30212.2.3 Neutron Scattering 30412.2.4 Neutron Pair Distribution Function 30712.3 Traditional Application on Energy Storage Materials 30812.3.1 Interaction of Neutrons with Energy Storage Materials 30812.3.2 Neutron Structural Studies of Batteries 30912.3.3 In situ/Operando SANS 31312.3.4 NPDF Application 31712.4 Summary and Prospect 319References 31913 Neutron Depth Profile 325Luojiang Zhang and Hao Cheng13.1 Introduction 32513.2 Application of NDP in Lithium-based Rechargeable Batteries 32913.2.1 Application in Organic Electrolyte Lithium-based Rechargeable Batteries 32913.2.2 Application in Solid-State Electrolyte Lithium-Based Rechargeable Batteries 33613.2.3 Application in Gel Polymer Electrolyte Lithium-Based Rechargeable Batteries 34213.3 Conclusions and Perspective 342References 34414 Neutron Imaging 349Rui Jia and Fan Zhang14.1 Introduction 34914.2 Basic Principles and NI System 35014.2.1 Basic Principles 35014.2.2 NI System 35114.3 Applications of NI in Energy Storage Materials and Devices 35214.3.1 Ex-situ Applications on Energy Storage Materials and Devices 35314.3.2 In-situ Applications on Energy Storage Materials and Devices 35514.4 Summary and Prospects 361References 363Volume IIPreface xiiiPart III Optical Techniques 37115 UV–Vis Spectroscopy for Energy Storage and Related Materials 373Jiratchaya Ayawanna, Salisa Chaiyaput, Pinit Kidkhunthod, Phongsapak Sittimart, Anthika Lakhonchai, and Sarayut Tunmee15.1 Introduction 37315.2 Basic Principles 37415.2.1 Strengths UV–Vis Spectroscopy 37915.2.2 Limitations of UV–Vis Spectroscopy 37915.2.3 Overview of Typical UV–Vis Applications 38015.3 Traditional Application of UV–Vis Spectroscopy on Energy Storage Materials 38115.3.1 In situ Raman and UV–Vis Spectroscopic Analysis of Lithium-ion Batteries 38115.3.2 Energy Storage in Bifunctional TiO 2 Composite Materials under UV and Visible Light 38315.3.3 Application of In Operando UV–Vis Spectroscopy in Lithium–Sulfur Batteries 38415.3.4 Investigation on Thermal Properties of Al 2 O 3 -based Phase Change Material Composite for Solar Thermal System Application 38515.4 In situ Application (or the Latest Progress) 38615.4.1 UV–Vis Spectroscopy, Electrochemical, and DFT Study of Tris(β-diketonato)iron(III) Complexes with Application in DSSC: Role of Aromatic Thienyl Groups 38615.4.2 Long-Term Energy Storage Systems Based on the Dihydroazulene/Vinylheptafulvene Photo-/Thermoswitch 38615.4.3 Simultaneous Detection of Nitrate and Nitrite Based on UV Absorption Spectroscopy and Machine Learning 38915.4.4 UV–Vis Spectrophotometer as an Alternative Technique for the Determination of Hydroquinone in Vinyl Acetate Monomer 39015.4.5 Review: Applications of Online UV–Vis Spectrophotometer for Drinking Water Quality Monitoring and Process Control: A Review 39115.5 Summary and Prospect 392References 39316 Raman Spectroscopy 397Shuhua Guan, Enda Liao, Shuling Sun, Qiaoling Peng, Ke Zeng, Kyungsoo Shin, Xiuli Guo, and Xiaolong Zhou16.1 Basic Principles of Raman Spectroscopy 39716.2 Overview of Raman Spectroscopy 39916.2.1 Raman Shift 39916.2.2 The Component of Raman Spectrometer 39916.2.3 Surface-enhanced Raman Spectroscopy 40116.2.4 Main Application of Raman Spectroscopy 40216.2.4.1 Application in Chemical Research 40216.2.4.2 Application in Organic Polymer and Biology Research 40316.2.4.3 Application in Drug and Police Drug Detection 40316.3 Applications to Energy Storage Materials Research 40316.3.1 Carbon-based Materials 40316.3.2 Metallic Compound 40716.3.3 Organic Materials 40816.4 In-situ Analysis of Raman Spectroscopy 40916.5 Summary and Prospect 411References 41217 Fourier Transform Infrared Spectroscopy 419Bin Tang and Fan Zhang17.1 Introduction 41917.2 Basic Principles 42017.2.1 Basic Principles of FTIR Spectroscopy 42017.2.2 Basic Structure and Principle of FTIR Spectrometer 42317.2.3 Principle and Equipment of In-situ FTIR Spectrometer 42517.3 Traditional Application on Energy Storage Materials 42617.4 In-situ Application 43017.4.1 In-situ FTIR Spectroscopy 43017.4.2 In-situ Microscope Fourier Transform Infrared Reflection Spectroscopy 43617.4.3 In-situ Polarization Modulation Fourier Transform Infrared Spectroscopy 43717.5 Summary and Prospect 440References 44018 Optical Microscopy 447Fan Zhang and Yike Wei18.1 Introduction 44718.2 Basic Principles 44818.2.1 Traditional Optical Microscope 44818.2.2 Near-field Optical Microscope 45018.2.2.1 The Theory of Near-field Optical Microscope 45118.2.2.2 The Classification of Near-field Optical Microscopes 45418.2.2.3 Structure and Application of Near-field Optical Microscope 45518.3 The Application of Optical Microscopy 45618.3.1 The Optical Microscopic Observation of Dendritic/ Electrodeposition 45718.3.2 The Optical Microscope Observation of Electrode 46118.3.3 The Optical Microscope Observation of Electrolyte 46418.4 Summary and Prospect 465References 466Part IV Microwave Techniques 47319 Nuclear Magnetic Resonance 475Jianfeng Wen and Xin Lei19.1 Introduction 47519.2 Theoretical Basis of Nuclear Magnetic Resonance 47619.2.1 General Principles 47619.2.2 Pulsed-field Gradient NMR (PFG-NMR) 47919.2.3 Solid-state NMR 48119.2.4 In Situ NMR and MRI 48219.3 Application on Battery Electrolytes 48419.3.1 Electrolyte Degradation Analysis 48419.3.1.1 Identification of Degradation Products 48419.3.1.2 Explanation of the Degradation Mechanisms 48519.3.2 Diffusion Condition and Ion Structure 48619.3.2.1 Analysis of Ion Dissociation 48719.3.2.2 Evaluation of the Ion Solvation Structure 48719.3.2.3 Calculation of Ion Transference Number 48919.3.3 In Situ NMR Applications 48919.3.3.1 Determination of the Concentration Gradients 49019.3.3.2 Monitoring Electrolyte Chemical Composition 49119.4 Solid-state NMR for Battery Analysis 49219.4.1 Electrode Materials 49319.4.1.1 Cathodes 49319.4.1.2 Anodes 49719.4.2 Solid Electrolyte Interface 49819.4.3 Solid-state Electrolyte 49919.4.4 In Situ NMR and MRI 50019.4.4.1 Cathodes 50119.4.4.2 Anodes 50219.4.4.3 In Situ MRI 50319.5 Summary and Prospect 504References 50620 Electron Paramagnetic Resonance and Imaging 513Chenjie Lou, Jie Liu, Jipeng Fu, and Mingxue Tang20.1 Introduction 51320.2 Ex situ EPR of Battery Materials 51520.3 In situ EPR of Battery Materials 51920.3.1 In Situ EPR of LIBs 52120.3.2 In Situ EPR Imaging of LIBs and SIBs 53020.4 Summary and Prospect 534Acknowledgments 535References 535Part V Electron Techniques 54121 Morphology Dependent Energy Storage Performance of Supercapacitors and Batteries: Scanning Electron Microscopy as an Essential Tool for Material Characterization 543Surjit Sahoo and Chandra Sekhar Rout21.1 Introduction 54321.2 Zero-dimensional (0-D) Electrode Materials for Supercapacitors and Batteries 54821.3 One-dimensional Nanostructured Electrode Materials for Supercapacitors and Batteries 55421.4 Two-dimensional Nanostructured Electrode Materials for Supercapacitors and Batteries 55921.5 3D Nanostructured Electrode Materials for Supercapacitors and Batteries 56321.6 Conclusion 568References 56822 Transmission Electron Microscopy 573Yue Gong and Lin Gu22.1 Introduction 57322.1.1 Basic Principles of Transmission Electron Microscopy 57422.1.2 Scanning Transmission Electron Microscopy 57522.1.3 Aberration Correction 57622.1.4 Electron Energy Loss Spectroscopy and Energy Dispersion X-ray Spectroscopy 57822.1.5 Atomic and Electronic Structures at Atomic Resolution 58022.2 EM Research of Energy Storage Materials 58022.2.1 Atomic Structure 58122.2.2 Electronic Structure 58422.2.2.1 Charge Structure 58422.2.2.2 Orbital Structure 58722.2.2.3 Spin Structure 58722.3 In Situ EM Methods 58722.3.1 In Situ Biasing and Heating 58822.3.2 In Situ Liquid Cell 59322.3.3 In Situ Environmental EM Method 59322.3.4 In Situ Mechanical Method 59522.4 Cutting-edge EM Methods for Energy Storage Material 59622.4.1 Cryo-EM Methodology 59622.4.2 Tomography 59922.4.3 Ptychography, DPC, and 4D-STEM 59922.5 Summary and Prospect 603References 60323 Cryo-Electron Microscopy 611Ran Zhao, Anqi Zhang, Yahui Wang, Jingjing Yang, Xiaomin Han, Jiasheng Yue, Zhifan Hu, Chuan Wu, and Ying Bai23.1 Development of Cryo-EM 61123.2 Workflow of Cryo-EM Characterization 61323.2.1 Sample Preparation 61423.2.2 Sample Transfer 61423.2.3 Data Acquisition 61523.2.4 Analysis and Correlation with Performance 61523.3 Interphase Characterization by Cryo-EM 61723.3.1 SEI Composition and Evolution 61823.3.1.1 LIBs with Liquid Electrolyte 61823.3.1.2 Solid-state LIBs 62323.3.1.3 Beyond Chemistry of Lithium 62723.3.2 CEI Composition and Evolution 63023.4 Material Characterization by Cryo-EM 63223.4.1 Metal Deposition Behavior 63223.4.2 Other Beam-Sensitive Materials 63823.5 Perspective 642References 64524 Structural/Chemical Characterization of Alkali-ion Battery Materials Using Electron Energy-loss Spectroscopy Coupled with Transmission Electron Microscopy 653Shunsuke Muto24.1 Introduction 65324.2 General Principles of EELS 65524.2.1 Hardware and Basic Formula for Inelastic Scattering 65524.2.2 Low Energy Loss Region (Low-loss Spectra; 0 < ΔE < 50 eV) 65824.2.3 Core Electron Excitation Spectra (Core-loss) 65924.2.4 Techniques for Visualizing Local Chemical States 66224.2.4.1 Energy-filtered TEM (EF-TEM) 66224.2.4.2 STEM-EELS Spectral Imaging 66324.2.4.3 Signal Processing and Statistical Method Applications 66424.2.5 Other Nonconventional Techniques 66524.2.5.1 Spatially Resolved EELS (SR-EELS) 66524.2.5.2 Site-selective Analysis (ALCHEMI Method) 66624.3 Applications of S/TEM-EELS to the Analysis of Alkali Metal-ion Batteries and Other Energy Storage Materials 66924.3.1 Degradation Analysis of Cathodes of Lithium-ion Batteries Associated with Charge/Discharge Cycles 66924.3.1.1 NCA Cathode and its Mg-doping Effect 66924.3.1.2 Lithium Analysis 67724.3.1.3 Site-selective Valence State Measurement in LNMO Cathodes 68024.3.2 Miscellaneous Analysis Examples 68324.3.3 Anode Material of SIBs; Utilization of Low-loss 68524.4 Concluding Remarks 689Acknowledgments 690References 69025 Scanning Tunneling Microscope 697Kaiye Zheng, Qianlin Luo, and Yongping Zheng25.1 Introduction 69725.2 General Principle of STM 69925.2.1 The Quantum Tunneling Effect 69925.2.2 Principle of STM 70025.3 STM Research and Application in Electrocatalysis 70125.3.1 Application of Surface Structure 70125.3.2 Surface Active Site 70625.4 Summary and Outlook 709References 710Part VI Advanced Techniques 71326 Combined In situ/Operando Techniques 715Yuanqi Lan and Wenjiao Yao26.1 Introduction 71526.2 Advantages and Necessity of Combined In situ/Operando Techniques 71626.3 X-ray-based Combined In situ/Operando Techniques 71926.3.1 Combination of Imaging and Spectroscopy 71926.3.2 Combination of Spectroscopy and Scattering/Diffraction 72426.3.3 Combination of Diffraction and Imaging 72726.4 Other Combined In situ/Operando Techniques 73126.4.1 Xrd-ae 73126.4.2 Afm-etem 73326.4.3 Ec-ters 73426.4.4 Dems–deirs 73626.4.5 Optical Stress-sensor-based MEMS-Raman 73726.4.6 Lcm–dim 74126.5 Summary and Prospective 741References 74227 Non-destructive Technologies 747Tianyi Song and Wenjiao Yao27.1 Introduction 74727.2 Acoustic Fundamental Theory 74827.3 Acoustic Emission (AE) 74927.3.1 Instrumentation and Principles 75027.3.2 Applications in Energy Storage System 75227.4 Ultrasonic Testing (UT) 75727.4.1 Fundamental Principles and Instrumentation 75727.4.2 Applications in Energy Storage Systems 76227.4.2.1 SoC and SoH Monitoring 76227.4.2.2 Ultrasonic Imaging 76627.4.2.3 Combination Techniques Based on Ultrasonic Testing 76827.5 Summary and Outlook 769References 771Index 777