Elliptic Boundary Value Problems with Fractional Regularity Data

The First Order Approach

Inbunden, Engelska, 2018

Av Alex Amenta, Pascal Auscher

1 909 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy-Sobolev and Besov spaces. The authors use the so-called ``first order approach'' which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations.This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis.

Produktinformation

  • Utgivningsdatum2018-05-30
  • Mått178 x 254 x undefined mm
  • Vikt550 g
  • FormatInbunden
  • SpråkEngelska
  • SerieCRM Monograph Series
  • Antal sidor152
  • FörlagAmerican Mathematical Society
  • ISBN9781470442507