Electron Capture Detector and The Study of Reactions With Thermal Electrons
Inbunden, Engelska, 2004
Av E. C. M. Chen, E. S. D. Chen, Texas) Chen, E. C. M. (University of Houston - Clear Lake, Houston, Texas) Chen, E. S. D. (Rice University, Houston, E C M Chen, E S D Chen
3 669 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Broad in scope, this book describes the general theory and practice of using the Electron Capture Detector (ECD) to study reactions of thermal electrons with molecules. It reviews electron affinities and thermodynamic and kinetic parameters of atoms, small molecules, and large organic molecules obtained by using various methods.* Summarizes other methods for studying reactions of thermal electrons with molecules* Discusses applications in analytical chemistry, physical chemistry, and biochemistry* Provides a data table of electron affinities
Produktinformation
- Utgivningsdatum2004-05-11
- Mått165 x 239 x 25 mm
- Vikt710 g
- FormatInbunden
- SpråkEngelska
- Antal sidor416
- FörlagJohn Wiley & Sons Inc
- ISBN9780471326229
Tillhör följande kategorier
E. C. M. CHEN is Professor Emeritus in the Department of Natural and Applied Sciences at the University of Houston-Clear Lake.E. S. CHEN is formerly of the Center for Research on Parallel Computation at Rice University in Houston, Texas.
- Foreword xiiiPreface xv1. Scope and History of the Electron 11.1 General Objectives and Organization 11.2 General Scope 21.3 History of the Electron 4References 62. Definitions, Nomenclature, Reactions, and Equations 82.1 Introduction 82.2 Definition of Kinetic and Energetic Terms 82.3 Additional Gas Phase Ionic Reactions 152.4 Electron Affinities from Solution Data 162.5 Semi-Empirical Calculations of Energetic Quantities 172.6 Herschbach Ionic Morse Potential Energy Curves 182.7 Summary 19References 203. Thermal Electron Reactions at the University of Houston 223.1 General Introduction 223.2 The First Half-Century, 1900 to 1950 233.3 Fundamental Discovery, 1950 to 1960 253.4 General Accomplishments, 1960 to 1970 273.4.1 Introduction 273.4.2 The Wentworth Group 283.4.3 Stable Negative-Ion Formation 283.4.4 Dissociative Thermal Electron Attachment 333.4.5 Nonlinear Least Squares 353.5 Milestones in the Wentworth Laboratory and Complementary Methods, 1970 to 1980 373.6 Negative-Ion Mass Spectrometry and Morse Potential Energy Curves, 1980 to 1990 403.7 Experimental and Theoretical Milestones, 1990 to 2000 413.8 Summary of Contributions at the University of Houston 42References 434. Theoretical Basis of the Experimental Tools 474.1 Introduction 474.2 The Kinetic Model of the ECD and NIMS 474.3 Nondissociative Electron Capture 504.4 Dissociative Electron Attachment 594.5 Electron Affinities and Half-Wave Reduction Potentials 644.6 Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons 664.7 Electron Affinities and Charge Transfer Complex Energies 674.8 Summary 71References 735. Experimental Procedures and Data Reduction 755.1 Introduction 755.2 Experimental ECD and NICI Procedures 765.3 Reduction of ECD Data to Fundamental Properties 855.3.1 Introduction 855.3.2 Acetophenone and Benzaldehyde 865.3.3 Benzanthracene, Benz[a]pyrene, and 1-Naphthaldehyde 875.3.4 Carbon Disulfide 895.3.5 Nitromethane 905.3.6 Consolidation of Electron Affinities for Molecular Oxygen 915.4 Reduction of Negative-Ion Mass Spectral Data 935.5 Precision and Accuracy 965.6 Evaluation of Experimental Results 975.7 Summary 101References 1016. Complementary Experimental and Theoretical Procedures 1036.1 Introduction 1036.2 Equilibrium Methods for Determining Electron Affinities 1056.3 Photon Techniques 1106.4 Thermal Charge Transfer Methods 1166.5 Electron and Particle Beam Techniques 1216.6 Condensed Phase Measurements of Electron Affinities 1246.7 Complementary Theoretical Calculations 1256.7.1 Atomic Electron Affinities 1266.7.2 Polyatomic Molecules 1286.8 Rate Constants for Attachment, Detachment, and Recombination 1326.9 Summary 134References 1347. Consolidating Experimental, Theoretical, and Empirical Data 1397.1 Introduction 1397.2 Semi-Empirical Quantum Mechanical Calculations 1407.3 Morse Potential Energy Curves 1507.3.1 Classification of Negative-Ion Morse Potentials 1517.3.2 The Negative-Ion States of H 2 1537.3.3 The Negative-Ion States of I 2 1567.3.4 The Negative-Ion States of Benzene and Naphthalene 1577.4 Empirical Correlations 1617.5 Summary 165References 1668. Selection, Assignment, and Correlations of Atomic Electron Affinities 1688.1 Introduction 1688.2 Evaluation of Atomic Electron Affinities 1698.3 Mulliken Electronegativities 1788.4 Electron Affinities of Atomic Clusters 1848.5 Summary 189References 1909. Diatomic and Triatomic Molecules and Sulfur Fluorides 1939.1 Introduction 1939.2 Diatomic Molecules 1949.2.1 Electron Affinities and Periodic Trends of Homonuclear Diatomic Molecules 1949.2.2 Electron Affinities and Morse Potential Energy Curves: Group VII Diatomic Molecules and Anions 1979.2.3 Electron Affinities and Morse Potential Energy Curves: Group VI Diatomic Molecules and Anions 2059.2.4 Electron Affinities and Morse Potential Energy Curves: Group IA and IB Homonuclear Diatomic Molecules and Anions 2099.2.5 Electron Affinities and Morse Potential Energy Curves: NO and NO(-) 2149.3 Triatomic Molecules and Anions 2169.4 Electron Affinities and Morse Potential Energy Curves: Sulfur Fluorides and Anions 2249.5 Summary 229References 22910. Negative Ions of Organic Molecules 23410.1 Introduction 23410.2 Electron Affinities and Potential Energy Curves for Nitrobenzene and Nitromethane 23510.3 Electron Affinities Determined Using the Magnetron, Alkali Metal Beam, Photon, and Collisional Ionization Methods 23810.3.1 Electron Affinities Determined Using the Magnetron Method 23810.3.2 Electron Affinities Determined Using the AMB Method 24010.3.3 Electron Affinities Determined Using Photon Methods 24110.3.4 Electron Affinities Determined Using Collisional Ionization Methods 24310.4 Electron Affinities Determined Using the ECD, NIMS, and TCT Methods 24410.4.1 Electron Affinities of Aromatic Hydrocarbons by the ECD Method 24410.4.2 Electron Affinities of Organic Carbonyl Compounds by the ECD Method 24610.4.3 Electron Affinities of Organic Nitro Compounds the ECD and TCT Methods 25310.5 Electron Affinities of Charge Transfer Complex Acceptors 25710.6 Substituent Effect 26110.7 Summary 263References 26311. Thermal Electrons and Environmental Pollutants 26611.1 Introduction 26611.2 Alkyl Halides 26711.2.1 Morse Potential Energy Curves 26711.2.2 Experimental Activation Energies 26911.2.3 Alkyl Fluorocompounds 27211.2.4 Electron Affinities of the Alkyl Halides 27411.3 Aromatic Halides 27611.3.1 Electron Affinities of Fluoro- and Chlorobenzenes 27611.3.2 Electron Affinities from Reduction Potentials and CURES-EC 28311.3.3 Negative-Ion Mass Spectra and Electron Affinities 28411.4 Negative-Ion Mass Spectrometry 28711.5 Calculation of the ECD and NIMS Temperature Dependence 29111.6 Summary 293References 29312. Biologically Significant Molecules 29612.1 Introduction 29612.2 Electron Affinities of Purines and Pyrimidines 29912.2.1 Predictions of Electron Affinities 29912.2.2 Electron Affinities from Reduction Potentials 30012.2.3 Gas Phase Measurements of Electron Affinities 30212.2.4 Theoretical Electron Affinities 30512.3 Electron Affinities of Biological Molecules from Reduction Potentials 30712.4 Gas Phase Acidities of Nucleic Acids 31012.5 Morse Potential Energy Curves for Thymine and Cytosine 31112.6 Gas Phase Acidities and Electron Affinities of the Amino Acids 31512.7 The Calculation of the ECD and NIMS Temperature Dependence 31612.8 Electron Affinities of AT AU and GC 31812.9 Radiation Damage in DNA 32012.10 Summary 326References 327Appendices 329I Glossary of Terms, Acronyms, and Symbols 331II Structures of Organic Molecules 336III General Least Squares 339IV Tables of Evaluated Electron Affinities 349Table A.1 Atoms 349Table A1.2 Main Group Homonuclear Diatomic Molecules 351References 352Table A2.1 and A.2 CH Molecules 355References 357Table A2.3 and A2.4 CHX Molecules 357References 359Table A3.1 and A3.2 CHNX Molecules 360References 361Table A4.1 and A4.2 CHO Molecules 362Table A4.3 and A4.4 CHOX Molecules 366References 369Table A5.1 and A5.2 CHON Molecules 370Table A5.3 and A5.4 CHONX Molecules 375References 376Table A6.1 Bergman Dewar set 377Table A6.2 Values Different from NIST Values (from Tables A2.1 to A5.4) 378Table A6.3 Unpublished or Updated Gas Phase Values not in NIST Tables 380Table A6.4 Values for Adenine, Guanine, Cytosine, Uracil, Thymine, and Their Hydrates 382Table A6.5 Values for Charge Transfer Complex Acceptors not in NIST Tables 382Table A6.6 Values for Chlorinated Hydrocarbons from Reduction Potentials and CURES-EC 383Table A6.7 Values for Biological Compounds from Reduction Potentials 383Author Index 387Subject Index 395
“…contains a wealth of thermochemical information.” (ChemPhysChem, 2005; Vol. 6, 9) "This book is thorough and comprehensive in its coverage of ECDs and ECDs to study the reactions with thermal electrons…" (E-STREAMS, October 2004)