bokomslag Discovery of Ill-Known Motifs in Time Series Data
Data & IT

Discovery of Ill-Known Motifs in Time Series Data

Sahar Deppe

Pocket

1229:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 205 sidor
  • 2021
This book includes a novel motif discovery for time series, KITE (ill-Known motIf discovery in Time sEries data), to identify ill-known motifs transformed by affine mappings such as translation, uniform scaling, reflection, stretch, and squeeze mappings. Additionally, such motifs may be covered with noise or have variable lengths. Besides KITE's contribution to motif discovery, new avenues for the signal and image processing domains are explored and created. The core of KITE is an invariant representation method called Analytic Complex Quad Tree Wavelet Packet transform (ACQTWP). This wavelet transform applies to motif discovery as well as to several signal and image processing tasks. The efficiency of KITE is demonstrated with data sets from various domains and compared with state-of-the-art algorithms, where KITE yields the best outcomes.
  • Författare: Sahar Deppe
  • Format: Pocket/Paperback
  • ISBN: 9783662642146
  • Språk: Engelska
  • Antal sidor: 205
  • Utgivningsdatum: 2021-10-02
  • Förlag: Springer Fachmedien Wiesbaden