Dilations, Linear Matrix Inequalities, the Matrix Cube Problem and Beta Distributions
Häftad, Engelska, 2019
Av J. William Helton, Igor Klep, Scott McCullough, Markus Schweighofer
1 699 kr
Slutsåld
An operator $C$ on a Hilbert space $\mathcal H$ dilates to an operator $T$ on a Hilbert space $\mathcal K$ if there is an isometry $V:\mathcal H\to \mathcal K$ such that $C= V^* TV$. A main result of this paper is, for a positive integer $d$, the simultaneous dilation, up to a sharp factor $\vartheta (d)$, expressed as a ratio of $\Gamma $ functions for $d$ even, of all $d\times d$ symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space.
Produktinformation
- Utgivningsdatum2019-03-30
- Mått178 x 254 x undefined mm
- Vikt185 g
- FormatHäftad
- SpråkEngelska
- SerieMemoirs of the American Mathematical Society
- Antal sidor104
- FörlagAmerican Mathematical Society
- ISBN9781470434557