Hoppa till sidans huvudinnehåll

Dilations, Linear Matrix Inequalities, the Matrix Cube Problem and Beta Distributions

Häftad, Engelska, 2019

Av J. William Helton, Igor Klep, Scott McCullough, Markus Schweighofer

1 699 kr

Slutsåld

An operator $C$ on a Hilbert space $\mathcal H$ dilates to an operator $T$ on a Hilbert space $\mathcal K$ if there is an isometry $V:\mathcal H\to \mathcal K$ such that $C= V^* TV$. A main result of this paper is, for a positive integer $d$, the simultaneous dilation, up to a sharp factor $\vartheta (d)$, expressed as a ratio of $\Gamma $ functions for $d$ even, of all $d\times d$ symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space.

Produktinformation

  • Utgivningsdatum2019-03-30
  • Mått178 x 254 x undefined mm
  • Vikt185 g
  • FormatHäftad
  • SpråkEngelska
  • SerieMemoirs of the American Mathematical Society
  • Antal sidor104
  • FörlagAmerican Mathematical Society
  • ISBN9781470434557