Digital Communications 2
Digital Modulations
Inbunden, Engelska, 2015
2 799 kr
Produktinformation
- Utgivningsdatum2015-10-06
- Mått165 x 241 x 25 mm
- Vikt644 g
- FormatInbunden
- SpråkEngelska
- Antal sidor334
- FörlagISTE Ltd and John Wiley & Sons Inc
- ISBN9781848218468
Tillhör följande kategorier
Didier Le Ruyet received his Eng. Degree and his Ph. D. degree from Conservatoire National des Arts et Métiers (CNAM) in 1994 and 2001 respectively. In 2009, he received the "Habilitation à diriger des recherches" from Paris XIII University. He is full professor at CNAM since 2010 and deputy director of the center for research in Computer Science and Telecommunications (CEDRIC). He has published about 100 papers in refereed journals and conference proceedings. His main research and teaching activities lie in the areas of digital communication, wireless communication and signal processing including channel coding and multi-antenna transmission.Mylène Pischella received her engineering degree and her phD in electronics and telecommunications from Télécom ParisTech. She is an associate professor at Conservatoire National des Arts et Métiers (CNAM), where she is responsible of courses on digital communications, wireless communications and information theory.
- Preface xi List of Acronyms xiiiNotations. xviiIntroduction xixChapter 1. Background 11.1. Introduction 11.2. Common operations and functions 11.2.1. Convolution 11.2.2. Scalar product 21.2.3. Dirac function, Dirac impulse and Kronecker’s symbol 21.2.4. Step function 31.2.5. Rectangular function 31.3. Common transforms 31.3.1. Fourier transform 31.3.2. The z transform 61.4. Probability background 61.4.1. Discrete random variables 71.4.2. Continuous random variables 91.4.3. Jensen’s inequality 91.4.4. Random signals 101.5. Background on digital signal processing 131.5.1. Sampling 131.5.2. Discrete, linear and time-invariant systems 141.5.3. Finite impulse response filters 171.5.4. Infinite impulse response filters 17Chapter 2. Baseband Transmissions 192.1. Introduction 192.2. Line codes 202.2.1. Non-return to zero (NRZ) code 202.2.2. Unipolar return-to-zero (RZ) code 232.2.3. Bipolar return-to-zero (RZ) code 252.2.4. Manchester code 252.2.5. Alternate mark inversion code 262.2.6. Miller code 282.2.7. Non-return to zero inverted (NRZI) 312.2.8. Multi level transmit 3 (MLT-3) code 322.2.9. RLL(d,k) codes 332.2.10. M-ary NRZ code 352.3. Additive white Gaussian noise channel 362.4. Optimum reception on the additive white Gaussian noise channel 382.4.1. Introduction 382.4.2. Modulator’s block diagram 392.4.3. Optimum receiver for the additive white Gaussian noise channel 442.4.4. Evaluation of the bit error rate for the binary NRZ signal on the additive white Gaussian noise channel 522.5. Nyquist criterion 602.5.1. Introduction 602.5.2. Transmission channel 612.5.3. Eye diagram 622.5.4. Nyquist criterion 632.5.5. Transmit and receive filters with matched filter 662.6. Conclusion 682.7. Exercises 692.7.1. Exercise 1: power spectrum density of several line codes 692.7.2. Exercise 2: Manchester code 702.7.3. Exercise 3: study of a magnetic recording system 702.7.4. Exercise 4: line code and erasure 722.7.5. Exercise 5: 4 levels NRZ modulation 732.7.6. Exercise 6: Gaussian transmit filter 742.7.7. Exercise 7: Nyquist criterion 752.7.8. Exercise 8: raised cosine filter 76Chapter 3. Digital Modulations on Sine Waveforms 773.1. Introduction 773.2. Passband transmission and equivalent baseband chain 783.2.1. Narrowband signal 783.2.2. Filtering of a narrowband signal in a passband channel 823.2.3. Complex order of a second-order stationary random process 843.2.4. Synchronous detection 903.3. Linear digital modulations on sine waveforms 923.3.1. Main characteristics of linear digital modulations 923.3.2. Parameters of an M-symbols modulation 963.3.3. Amplitude shift keying 983.3.4. Phase shift keying 1063.3.5. Quadrature amplitude modulations 1133.3.6. Link between Eb N0 and signal-to-noise ratio depending on the power values 1193.3.7. Power spectrum density of regular modulations 1203.3.8. Conclusion 1213.4. Frequency shift keying 1223.4.1. Definitions 1223.4.2. Discontinuous-phase FSK 1243.4.3. Continuous-phase FSK 1263.4.4. Demodulation 1263.4.5. GMSK modulation 1303.4.6. Performances 1323.5. Conclusion 1353.6. Exercises 1353.6.1. Exercise 1: constellations of 8-QAM 1353.6.2. Exercise 2: irregular ASK modulation 1363.6.3. Exercise 3: comparison of two PSK 1373.6.4. Exercise 4: comparison of QAM and PSK modulations 1373.6.5. Exercise 5: comparison of 8-PSK and 8-QAM modulations 1383.6.6. Exercise 6: comparison of 2-FSK and 2-ASK modulations 1393.6.7. Exercise 7: comparison of 16-QAM and 16-FSK 140Chapter 4. Synchronization and Equalization 1414.1. Introduction 1414.2. Synchronization 1424.2.1. Frequency shift correction 1444.2.2. Time synchronization 1504.2.3. Channel estimate with training sequence 1534.2.4. Cramer–Rao’s bound 1544.3. Equalization 1574.3.1. Channel generating distortions 1584.3.2. Discrete representation of a channel with inter-symbol interference and preprocessing 1594.3.3. Linear equalization 1624.3.4. Decision-feedback equalization 1774.3.5. Maximum likelihood sequence estimator 1804.4. Conclusion 1864.5. Exercises 1874.5.1. Exercise 1: estimation of a constant signal from noisy observations 1874.5.2. Exercise 2: frequency shift correction 1884.5.3. Exercise 3: zero-forcing equalization 1884.5.4. Exercise 4: MMSE equalization 1894.5.5. Exercise 5: MMSE-DFE equalization 1904.5.6. Exercise 6: MLSE equalization with one shift register 1904.5.7. Exercise 7: MLSE equalization with two shift registers 190Chapter 5. Multi-carrier Modulations 1935.1. Introduction 1935.2. General principles of multi-carrier modulation 1965.2.1. Parallel transmission on subcarriers 1965.2.2. Non-overlapping multi-carrier modulations: FMT 1975.2.3. Overlapping multi-carrier modulations 1985.2.4. Chapter’s structure 1995.3. OFDM 1995.3.1. Transmission and reception in OFDM 2015.3.2. Cyclic prefix principle 2025.3.3. Optimum power allocation in OFDM 2095.3.4. PAPR 2155.3.5. Sensitivity to asynchronicity 2185.3.6. OFDM synchronization techniques 2195.4. FBMC/OQAM 2255.4.1. Principles of continuous-time FBMC/OQAM 2255.4.2. Discrete-time notations for FBMC/OQAM 2315.4.3. Prototype filter 2335.5. Conclusion 2365.6. Exercises 2365.6.1. Exercise 1 2365.6.2. Exercise 2 237Chapter 6. Coded Modulations 2396.1. Lattices 2406.1.1. Definitions 2406.1.2. Group properties of a lattice 2456.1.3. Lattice classification 2486.1.4. Lattice performances on the additive white Gaussian noise channel 2516.2. Block-coded modulations 2556.2.1. Main algebraic constructions of lattices 2566.2.2. Construction of block-coded modulations 2596.3. Trellis-coded modulations 2706.3.1. Construction of trellis-coded modulations 2716.3.2. Decoding of trellis-coded modulations 2756.4. Conclusion 276Appendices 277Appendix A 279Appendix B 285Bibliography 291Index 297Summary of Volume 1 299