bokomslag Deep Learning on Edge Computing Devices
Data & IT

Deep Learning on Edge Computing Devices

Xichuan Zhou Haijun Liu Cong Shi Ji Liu

Pocket

2279:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 2022
Deep Learning on Edge Computing Devices: Design Challenges of Algorithm and Architecture focuses on hardware architecture and embedded deep learning, including neural networks. The title helps researchers maximize the performance of Edge-deep learning models for mobile computing and other applications by presenting neural network algorithms and hardware design optimization approaches for Edge-deep learning. Applications are introduced in each section, and a comprehensive example, smart surveillance cameras, is presented at the end of the book, integrating innovation in both algorithm and hardware architecture. Structured into three parts, the book covers core concepts, theories and algorithms and architecture optimization. This book provides a solution for researchers looking to maximize the performance of deep learning models on Edge-computing devices through algorithm-hardware co-design.
  • Författare: Xichuan Zhou, Haijun Liu, Cong Shi, Ji Liu
  • Format: Pocket/Paperback
  • ISBN: 9780323857833
  • Språk: Engelska
  • Utgivningsdatum: 2022-02-07
  • Förlag: Elsevier - Health Sciences Division