Data-Driven Fault Detection for Industrial Processes

Canonical Correlation Analysis and Projection Based Methods

Häftad, Engelska, 2017

Av Zhiwen Chen

1 069 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Zhiwen Chen aims to develop advanced fault detection (FD) methods for the monitoring of industrial processes. With the ever increasing demands on reliability and safety in industrial processes, fault detection has become an important issue. Although the model-based fault detection theory has been well studied in the past decades, its applications are limited to large-scale industrial processes because it is difficult to build accurate models. Furthermore, motivated by the limitations of existing data-driven FD methods, novel canonical correlation analysis (CCA) and projection-based methods are proposed from the perspectives of process input and output data, less engineering effort and wide application scope. For performance evaluation of FD methods, a new index is also developed.

Produktinformation

  • Utgivningsdatum2017-01-09
  • Mått148 x 210 x undefined mm
  • FormatHäftad
  • SpråkEngelska
  • Antal sidor112
  • FörlagSpringer Fachmedien Wiesbaden
  • ISBN9783658167554