Data-Driven Computational Neuroscience

Machine Learning and Statistical Models

Inbunden, Engelska, 2020

Av Concha Bielza, Pedro Larrañaga, Pedro Larrañaga, Concha (Universidad Politecnica de Madrid) Bielza, Pedro (Universidad Politecnica de Madrid) Larranaga

1 369 kr

Tillfälligt slut

Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neuroscience. The methods are demonstrated through case studies of real problems to empower readers to build their own solutions. The book covers a wide variety of methods, including supervised classification with non-probabilistic models (nearest-neighbors, classification trees, rule induction, artificial neural networks and support vector machines) and probabilistic models (discriminant analysis, logistic regression and Bayesian network classifiers), meta-classifiers, multi-dimensional classifiers and feature subset selection methods. Other parts of the book are devoted to association discovery with probabilistic graphical models (Bayesian networks and Markov networks) and spatial statistics with point processes (complete spatial randomness and cluster, regular and Gibbs processes). Cellular, structural, functional, medical and behavioral neuroscience levels are considered.

Produktinformation

  • Utgivningsdatum2020-11-26
  • Mått185 x 259 x 43 mm
  • Vikt1 490 g
  • FormatInbunden
  • SpråkEngelska
  • Antal sidor708
  • FörlagCambridge University Press
  • ISBN9781108493703

Mer från samma författare

Du kanske också är intresserad av

Kafé Pumpkin Spice
  • Nyhet
Del 1