Hoppa till sidans huvudinnehåll

Data Algorithms with Spark

Recipes and Design Patterns for Scaling Up using PySpark

Häftad, Engelska, 2022

Av Mahmoud Parsian

749 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Apache Spark's speed, ease of use, sophisticated analytics, and multilanguage support makes practical knowledge of this cluster-computing framework a required skill for data engineers and data scientists. With this hands-on guide, anyone looking for an introduction to Spark will learn practical algorithms and examples using PySpark.In each chapter, author Mahmoud Parsian shows you how to solve a data problem with a set of Spark transformations and algorithms. You'll learn how to tackle problems involving ETL, design patterns, machine learning algorithms, data partitioning, and genomics analysis. Each detailed recipe includes PySpark algorithms using the PySpark driver and shell script.With this book, you will:Learn how to select Spark transformations for optimized solutionsExplore powerful transformations and reductions including reduceByKey(), combineByKey(), and mapPartitions()Understand data partitioning for optimized queriesBuild and apply a model using PySpark design patternsApply motif-finding algorithms to graph dataAnalyze graph data by using the GraphFrames APIApply PySpark algorithms to clinical and genomics dataLearn how to use and apply feature engineering in ML algorithmsUnderstand and use practical and pragmatic data design patterns

Produktinformation

  • Utgivningsdatum2022-04-30
  • Mått178 x 232 x 26 mm
  • Vikt760 g
  • FormatHäftad
  • SpråkEngelska
  • Antal sidor500
  • FörlagO'Reilly Media
  • ISBN9781492082385

Tillhör följande kategorier