bokomslag Congruences for L-Functions
Vetenskap & teknik

Congruences for L-Functions

J Urbanowicz Kenneth S Williams

Inbunden

719:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 256 sidor
  • 2000
In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2· . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o < k
  • Författare: J Urbanowicz, Kenneth S Williams
  • Format: Inbunden
  • ISBN: 9780792363798
  • Språk: Engelska
  • Antal sidor: 256
  • Utgivningsdatum: 2000-06-30
  • Förlag: Springer