Complex Interpolation between Hilbert, Banach and Operator Spaces

Häftad, Engelska, 2010

Av Gilles Pisier

1 099 kr

Tillfälligt slut

Motivated by a question of Vincent Lafforgue, the author studies the Banach spaces X satisfying the following property: there is a function \varepsilon\to \Delta_X(\varepsilon) tending to zero with \varepsilon>0 such that every operator T\colon \ L_2\to L_2 with \|T\|\le \varepsilon that is simultaneously contractive (i.e., of norm \le 1) on L_1 and on L_\infty must be of norm \le \Delta_X(\varepsilon) on L_2(X). The author shows that \Delta_X(\varepsilon) \in O(\varepsilon^\alpha) for some \alpha>0 if X is isomorphic to a quotient of a subspace of an ultraproduct of \theta-Hilbertian spaces for some \theta>0 (see Corollary 6.7), where \theta-Hilbertian is meant in a slightly more general sense than in the author's earlier paper (1979).

Produktinformation

  • Utgivningsdatum2010-01-01
  • Vikt147 g
  • FormatHäftad
  • SpråkEngelska
  • SerieMemoirs of the American Mathematical Society
  • FörlagAmerican Mathematical Society
  • ISBN9780821848425