Kommande
bokomslag Complex, Hypercomplex and Fuzzy-valued Neural Networks
Data & IT

Complex, Hypercomplex and Fuzzy-valued Neural Networks

Agnieszka Niemczynowicz Irina Perfilieva Lluis M Garcia-Raffi Rados?Aw A Kycia

Inbunden

959:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

  • 144 sidor
  • 2025
Complex, Hypercomplex, and Fuzzy-valued Neural Networks are extensions of classical neural networks to higher dimensions. In recent decades, this theory has emerged as a forefront in neural networks theory. There are several approaches to extend classical neural network models: quaternionic analysis, which merely uses quaternions; Clifford analysis, which relies on Clifford algebras; and finally generalizations of complex variables to higher dimensions. This book reflects a selection of papers related to complex, hypercomplex analysis, and fuzzy approaches applied to neural networks theory. The topics covered represent new perspectives and current trends in neural networks and their applications to mathematical physics, image analysis and processing, mechanics, and beyond.
  • Författare: Agnieszka Niemczynowicz, Irina Perfilieva, Lluis M Garcia-Raffi, Rados?Aw A Kycia
  • Format: Inbunden
  • ISBN: 9781032847146
  • Språk: Engelska
  • Antal sidor: 144
  • Utgivningsdatum: 2025-12-23
  • Förlag: Taylor & Francis Ltd