Catalysis in Confined Frameworks
Synthesis, Characterization, and Applications
Inbunden, Engelska, 2023
Av Hermenegildo Garcia, Hermenegildo Garcia, Amarajothi Dhakshinamoorthy, Spain) Garcia, Hermenegildo (Universidad Politecnica de Valencia, India) Dhakshinamoorthy, Amarajothi (Madurai Kamaraj University
2 029 kr
Produktinformation
- Utgivningsdatum2023-12-13
- Mått170 x 244 x 15 mm
- Vikt680 g
- FormatInbunden
- SpråkEngelska
- Antal sidor496
- FörlagWiley-VCH Verlag GmbH
- ISBN9783527350896
Tillhör följande kategorier
Hermenegildo Garcia, PhD, is a Professor at the Instituto de Tecnologia Quimica, Technical University of Valencia, Spain, and an honorary Adjunct Professor at the Center of Excellence in Advanced Materials, King Abdullaziz University, Jeddah, Saudi Arabia. He is a past recipient of the Janssen-Cilag Award from the Spanish Royal Society of Chemistry and the Jaume I Prize for Novel Technologies, and has published extensively on heterogeneous catalysis and related subjects. Amarajothi Dhakshinamoorthy, PhD, is an UGC-Assitant Professor at the School of Chemistry, Madurai Kamaraj University, India. He is a former postdoctoral fellow at the Technical University of Valencia, Spain, and a past recipient of the Young Scientist Award from the Academy of Sciences, India. He has published widely on heterogeneous catalysis and related subjects.
- Preface xiii1 Engineering of Metal Active Sites in MOFs 1Carmen Fernández-Conde, María Romero-Ángel, Ana Rubio-Gaspar, and Carlos Martí-Gastaldo1.1 Metal Node Engineering 21.1.1 Frameworks with Intrinsically Active Metal Nodes 31.1.1.1 Metal–Organic Frameworks with Only One Metal 31.1.1.2 Metal–Organic Frameworks with more than One Metal in its Cluster 61.1.2 Introducing Defectivity as a Powerful Tool to Tune Metal-node Catalytic Properties in MOFs 81.1.3 Incorporating Metals to Already-Synthetized Metal–Organic Frameworks: Isolating the Catalytic Site 121.1.4 Metal Exchange 141.1.5 Attaching Metallic Units to the MOF 141.1.6 Grafting of Organometallic Complexes into the MOF Nodes 181.2 Ligand Engineering 211.2.1 Ligands as Active Metal Sites 221.2.1.1 Creating Metal Sites in the Organic Linkers. Types of Ligands 221.2.1.2 Cooperation Between Single-Metal Sites and Metalloligands 281.2.1.3 Ligand Accelerated Catalysis (LAC) 281.2.2 Introduction of Metals by Direct Synthesis 311.2.2.1 In-situ Metalation 321.2.2.2 Premetalated Linker 321.2.2.3 Postgrafting Metal Complexes 331.2.3 Introduction of Metals by Post-synthetic Modifications 341.2.3.1 Post-synthetic Exchange or Solvent-Assisted Linker Exchange (sale) 341.2.3.2 Post-synthetic Metalation 361.3 Metal-Based Guest Pore Engineering 381.3.1 Encapsulation Methodologies in As-Made Metal–Organic Frameworks 391.3.1.1 Incipient Wetness Impregnation 391.3.1.2 Ship-in-a-Bottle 421.3.1.3 Metal–Organic Chemical Vapor Deposition (MOCVD) 421.3.1.4 Metal-Ion Exchange 461.3.2 In Situ Guest Metal–Organic Framework Encapsulations 471.3.2.1 Solvothermal Encapsulation or One Pot 471.3.2.2 Co-precipitation Methodologies 49List of Abbreviations 52References 532 Engineering the Porosity and Active Sites in Metal–Organic Framework 67Ashish K. Kar, Ganesh S. More, and Rajendra Srivastava2.1 Introduction 672.2 Active Sites in MOF 692.2.1 Active Sites Near Pores in MOF 692.2.2 Active Sites Near Metallic Nodes in MOF 702.2.3 Active Sites Near Ligand Center in MOF 702.3 Synthesis and Characterization 702.4 Engineering of Active Sites in MOF Structure for Catalytic Transformations 722.4.1 Pore Tunability 732.4.2 Metal Nodes 772.4.3 Ligand Centers 832.5 Conclusion 90References 913 Characterization of Organic Linker-Containing Porous Materials as New Emerging Heterogeneous Catalysts 97Ali R. Oveisi, Saba Daliran, and Yong Peng3.1 Introduction 973.2 Microscopy Techniques 983.2.1 Scanning Electron Microscopy (SEM) 983.2.2 Transmission Electron Microscopy (TEM) 1003.2.3 Atomic Force Microscopy (AFM) 1033.3 Spectroscopy Techniques 1043.3.1 X-ray Spectroscopy 1043.3.1.1 X-ray Diffraction (XRD) 1043.3.1.2 X-ray Photoelectron Spectroscopy (XPS) 1053.3.1.3 X-ray Absorption Fine Structure (XAFS) Techniques 1073.3.2 Nuclear Magnetic Resonance (NMR) 1093.3.3 Electron Paramagnetic Resonance (EPR) 1103.3.4 Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV–Vis DRS) 1113.3.5 Inductively Coupled Plasma (ICP) Analysis 1123.4 Other Techniques 1143.4.1 Thermogravimetric Analysis (TGA) 1143.4.2 N2 Adsorption 1153.4.3 Density Functional Theory (DFT) Calculations 1183.5 Conclusions 121Acknowledgments 121References 1214 Mixed Linker MOFs in Catalysis 127Mohammad Y. Masoomi and Lida Hashemi4.1 Introduction 1274.1.1 Introduction to Mixed Linker MOFs 1274.2 Strategies for Synthesizing Mixed-Linker MOFs 1284.2.1 IML Frameworks 1284.2.2 HML Frameworks 1294.2.3 TML Frameworks 1304.3 Types of Mixed-Linker MOFs 1314.3.1 Pillared-Layer Mixed-Linker MOFs 1314.3.2 Cage-Directed Mixed-Linker MOFs 1324.3.3 Cluster-Based Mixed-Linker MOFs 1324.3.4 Structure Templated Mixed-Linker MOFs 1324.4 Introduction to Catalysis with MOFs 1334.5 Mixed-Linker MOFs as Heterogeneous Catalysts 1334.5.1 Mixed-Linker MOFs with Similar Size/Directionality Linkers 1344.5.2 Mixed-Linker MOFs with Structurally Independent Linkers 1404.6 Conclusion 148References 1485 Acid-Catalyzed Diastereoselective Reactions Inside MOF Pores 151Herme G. Baldoví, Sergio Navalón, and Francesc X. Llabrés I Xamena5.1 Introduction 1515.2 Diastereoselective Reactions Catalyzed by MOFs 1545.2.1 Meerwein–Ponndorf–Verley Reduction of Carbonyl Compounds 1545.2.2 Aldol Addition Reactions 1585.2.3 Diels–Alder Reaction 1625.2.4 Isomerization Reactions 1645.2.5 Cyclopropanation 1685.3 Conclusions and Outlook 176Acknowledgments 176References 1766 Chiral MOFs for Asymmetric Catalysis 181Kayhaneh Berijani and Ali Morsali6.1 Chiral Metal–Organic Frameworks (CMOFs) 1816.2 Synthesis Methods of CMOFs with Achiral and Chiral Building Blocks 1846.2.1 Spontaneous Resolution 1856.2.2 Direct Synthesis 1876.2.3 Indirect Synthesis 1906.3 Chiral MOF Catalysts 1926.3.1 Brief History of CMOF-Based Catalysts 1926.3.2 Designing CMOF Catalysts 1936.4 Examples of Enantioselective Catalysis Using CMOF-Based Catalysts 1946.4.1 Type I: Chiral MOFs in Simple Asymmetric Reactions 1946.4.2 Type II: Chiral MOFs in Complex Asymmetric Reactions 2066.5 Conclusion 210References 2107 MOF-Supported Metal Nanoparticles for Catalytic Applications 219Danyu Guo, liyu Chen, and Yingwei li7.1 Introduction 2197.2 Synergistic Catalysis by MNP@MOF Composites 2207.2.1 The Inorganic Nodes of MOFs Cooperating with Metal NPs 2207.2.2 The Organic Linkers of MOFs Cooperating with Metal NPs 2207.2.3 The Nanostructures of MOFs Cooperating with Metal NPs 2217.3 Electrocatalysis Applications 2217.3.1 Hydrogen Evolution Reaction 2217.3.2 Oxygen Evolution Reaction 2237.3.3 Oxygen Reduction Reaction 2247.3.4 CO2 Reduction Reaction 2247.3.4.1 CO 2257.3.4.2 HCOOH 2257.3.4.3 C2H4 2257.3.5 Nitrogen Reduction Reaction 2277.3.6 Oxidation of Small Molecules 2287.4 Photocatalytic Applications 2297.4.1 Photocatalytic Hydrogen Production 2297.4.2 Photocatalytic CO2 Reduction 2327.4.2.1 CO2 Photoreduction to CO 2327.4.2.2 CO2 Photoreduction to CH3OH 2337.4.2.3 CO2 Photoreduction to HCOO−/HCOOH 2347.4.3 Photocatalytic Organic Reactions 2357.4.3.1 Photocatalytic Hydrogenation Reactions 2357.4.3.2 Photocatalytic Oxidation Reactions 2357.4.3.3 Photocatalytic Coupling Reaction 2367.4.4 Photocatalytic Degradation of Organic Pollutants 2377.4.4.1 Degradation of Pollutants in Wastewater 2377.4.4.2 Degradation of Gas-Phase Organic Compounds 2397.5 Thermocatalytic Applications 2397.5.1 Oxidation Reactions 2397.5.1.1 Gas-Phase Oxidation Reactions 2397.5.1.2 Liquid-Phase Oxidation Reactions 2407.5.2 Hydrogenation Reactions 2417.5.2.1 Hydrogenation of C=C and C≡C Groups 2417.5.2.2 The Reduction of −NO2 Group 2427.5.2.3 The Reduction of C=O Groups 2447.5.3 Coupling Reactions 2447.5.3.1 Suzuki–Miyaura Coupling Reactions 2447.5.3.2 Heck Coupling Reactions 2467.5.3.3 Glaser Coupling Reactions 2467.5.3.4 Knoevenagel Condensation Reaction 2467.5.3.5 Three-Component Coupling Reaction 2477.5.4 CO2 Cycloaddition Reactions 2477.5.5 Tandem Reactions 2487.6 Conclusions and Outlooks 250References 2518 Confinement Effects in Catalysis with Molecular Complexes Immobilized into Porous Materials 273Maryse Gouygou, Philippe Serp, and Jérôme Durand8.1 Introduction 2738.2 Immobilization of Molecular Complexes into Porous Materials 2798.2.1 Confinement of Molecular Complexes in Mesoporous Silica 2798.2.2 Confinement of Molecular Complexes in Zeolites 2818.2.3 Confinement of Molecular Complexes in Covalent Organic Frameworks (COF) 2828.2.4 Confinement of Molecular Complexes in Metal–Organic Frameworks (MOFs) 2838.2.5 Confinement of Molecular Complexes in Carbon Materials 2858.3 Characterization of Molecular Complexes Immobilized into Porous Materials 2858.4 Catalysis with Molecular Complexes Immobilized into Porous Materials and Evidences of Confinement Effects 2878.4.1 Hydrogenation Reactions 2888.4.2 Hydroformylation Reactions 2898.4.3 Oxidation Reactions 2908.4.4 Ethylene Oligomerization and Polymerization Reactions 2918.4.5 Metathesis Reactions 2918.4.6 Miscellaneous Reactions on Various Supports 2938.4.6.1 Zeolites 2938.4.6.2 Mesoporous Silica 2938.4.6.3 MOFs 2948.4.7 Asymmetric Catalysis Reactions 2958.5 Conclusion 298References 2999 Size-Selective Catalysis by Metal–Organic Frameworks 315Amarajothi Dhakshinamoorthy and Hermenegildo García9.1 Introduction 3159.2 Friedel–Crafts Alkylation 3199.3 Cycloaddition Reactions 3209.4 Oxidation of Olefins 3239.5 Hydrogenation Reactions 3259.6 Aldehyde Cyanosilylation 3269.7 Knoevenagel Condensation 3289.8 Conclusions 329References 33010 Selective Oxidations in Confined Environment 333Oxana A. Kholdeeva10.1 Introduction 33310.2 Transition-Metal-Substituted Molecular Sieves 33410.2.1 Ti-Substituted Zeolites and H2O2 33410.2.2 Co-Substituted Aluminophosphates and O2 33710.3 Mesoporous Metal–Silicates 33810.3.1 Mesoporous Ti-Silicates in Oxidation of Hydrocarbons 33910.3.2 Mesoporous Ti-Silicates in Oxidation of Bulky Phenols 34010.3.3 Alkene Epoxidation over Mesoporous Nb-Silicates 34210.4 Metal–Organic Frameworks 34310.4.1 Selective Oxidations over Cr- and Fe-Based MOFs 34310.4.2 Selective Oxidations with H2O2 over Zr- and Ti-Based MOFs 34710.5 Polyoxometalates in Confined Environment 34910.5.1 Silica-Encapsulated POM 35010.5.2 MOF-Incorporated POM 35010.5.3 POMs Supported on Carbon Nanotubes 35210.6 Conclusion and Outlook 353Acknowledgments 354References 35411 Tailoring the Porosity and Active Sites in Silicoaluminophosphate Zeolites and Their Catalytic Applications 363Jacky H. Advani, Abhinav Kumar, and Rajendra Srivastava11.1 Introduction 36311.2 Synthesis of SAPO-n Zeolites 36511.3 Characterization of SAPO Zeolites 37011.4 SAPO-Based Catalysts in Organic Transformations 37011.4.1 Acid Catalysis 37011.4.2 Reductive Transformations 37411.4.2.1 Selective Catalytic Reduction (SCR) 37411.4.2.2 Hydroisomerization 37911.4.2.3 Hydroprocessing 38311.4.2.4 CO2 Hydrogenation 38511.5 Conclusion 387References 38812 Heterogeneous Photocatalytic Degradation of Pharmaceutical Pollutants over Titania Nanoporous Architectures 397Surya Kumar Vatti and Parasuraman Selvam12.1 Introduction 39712.2 Advanced Oxidation Process 39912.2.1 Ozonation 40112.2.2 UV Irradiation (Photolysis) 40112.2.3 Fenton and Photo-Fenton Process 40212.2.4 Need for Green Sustainable Heterogeneous AOP 40212.2.5 Heterogeneous Photocatalysis 40212.3 Semiconductor Photocatalysis Mechanism 40312.4 Factors Affecting Photocatalytic Efficiency 40412.5 Crystal Phases of TiO2 40412.6 Semiconductor/Electrolyte Interface and Surface Reaction 40612.7 Visible-Light Harvesting 40912.8 Photogenerated Charge Separation Strategies 41212.8.1 TiO2/Carbon Heterojunction 41212.8.2 TiO2/SC Coupled Heterojunction 41212.8.3 TiO2/ TiO2 Phase Junction 41412.8.4 Metal/ TiO2 Schottky Junction 41512.9 Ordered Mesoporous Materials 41512.10 Ordered Mesoporous Titania 41712.10.1 Synthesis and Characterization 41812.10.2 Photocatalytic Degradation Studies 42012.10.3 Complete Mineralization Studies 42412.10.4 Spent Catalyst 42512.11 Conclusion 427Acknowledgment 428References 42913 Catalytic Dehydration of Glycerol Over Silica and Alumina-Supported Heteropoly Acid Catalysts 433Sekar Mahendran, Shinya Hayami, and Parasuraman Selvam13.1 Introduction 43313.2 Value Addition of Bioglycerol 43413.3 Interaction Between HPA and Support 43713.4 Bulk Heteropoly Acid 43813.5 Silica-Supported HPA 43913.5.1 Effect of Textural Properties of Support on Product Selectivity 43913.5.2 Effect of Catalyst Loading 44013.5.3 Effect of Acid Sites 44013.5.4 Effect of Type of Heteropoly Acids 44313.6 Tuning the Acidity 44413.7 Conclusions 446Acknowledgments 447References 44714 Catalysis with Carbon Nanotubes 451Mohammad Y. Masoomi and Lida Hashemi14.1 Introduction 45114.1.1 Why CNT may be Suitable to be Used as Catalyst Supports? 45114.1.1.1 From the Point of Structural Features 45214.1.1.2 From the Point of Electronic Properties 45514.1.1.3 From the Point of Adsorption Properties 45514.1.1.4 From the Point of Mechanical and Thermal Properties 45614.2 Catalytic Performances of CNT-Supported Systems 45614.2.1 Different Approaches for the Anchoring of Metal-Containing Species on CNT 45714.2.2 Different Approaches for the Confining NPs Inside CNTs and Their Characterization 45714.2.2.1 Wet Chemistry Method 45814.2.2.2 Production of CNTs Inside Anodic Alumina 45914.2.2.3 Arc-Discharge Synthesis 45914.2.3 Hydrogenation Reactions 45914.2.4 Dehydrogenation Reactions 46014.2.5 Liquid-Phase Hydroformylation Reactions 46114.2.6 Liquid-Phase Oxidation Reactions 46214.2.7 Gas-Phase Reactions 46414.2.7.1 Syngas Conversion 46414.2.7.2 Ammonia Synthesis and Ammonia Decomposition 46414.2.7.3 Epoxidation of Propylene in DWCNTs 46514.2.8 Fuel Cell Electro Catalyst 46514.2.9 Catalytic Decomposition of Hydrocarbons 46614.2.10 CNT as Heterogeneous Catalysts 46614.2.11 Sulfur Catalysis 46714.3 Metal-Free Catalysts of CNTs 46714.4 Conclusion 468References 469Index 473