Biorefinery of Oil Producing Plants for Value-Added Products
Inbunden, Engelska, 2022
Av Suraini Abd-Aziz, Misri Gozan, Mohamad Faizal Ibrahim, Lai-Yee Phang
4 809 kr
Produktinformation
- Utgivningsdatum2022-01-19
- Mått175 x 252 x 48 mm
- Vikt1 769 g
- FormatInbunden
- SpråkEngelska
- Antal sidor784
- FörlagWiley-VCH Verlag GmbH
- ISBN9783527348763
Tillhör följande kategorier
Suraini Abd-Aziz, PhD, is Professor at the Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Malaysia; the current Asian Federation of Biotechnology Vice President of the Malaysia region; President of the Asian Federation of Biotechnology-Malaysia Chapter and Co-Chair of Bioenergy and Biorefinery Division for Asian Federation of Biotechnology.Misri Gozan, PhD, is Professor of Bioprocess Engineering, Universitas Indonesia, Indonesia and the former Asian Federation of Biotechnology Vice President of the Indonesia region. Mohamad Faizal Ibrahim, PhD, is Associate Professor at the Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Malaysia. Lai-Yee Phang, PhD, is Associate Professor at the Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Malaysia.
- Volume 1Preface xviiAbout the Editors xix1 A Glance On Oil Producing Plants, Pretreatment and Bioenergy Production Using Oil Producing Plant 1Suraini Abd-Aziz and Misri GozanReferences 9Part I Availability of Oil Producing Plants 112 Demand and Sustainability of Palm Oil Plantation 13Suraini Abd-Aziz, Misri Gozan, Mohamad Faizal Ibrahim, and Lai-Yee Phang2.1 Introduction 132.2 Production and Consumption of Global Palm Oil Industry 142.3 Major Hindrances in Sustainability Considerations 172.3.1 Environmental Issues 182.3.2 Socioeconomic Issues 192.4 Future Sustainability Implications of the World Largest Palm Oil Producers 202.4.1 Indonesia 212.4.2 Malaysia 222.5 Sustainable Versus Unsustainable Palm Oil Toward Carbon Neutral Emissions 232.6 Conclusions 24References 253 Planting and Harvesting Jatropha 29Penjit Srinophakun, Anna Saimaneerat, and Vipa Hongtrakul3.1 Introduction 293.2 KUBP 78-9 and KUBP 202 Varieties 303.2.1 Plant Spacing 313.2.2 Plantation Layout and Data Collection 313.2.3 Fertilizer Application 333.2.4 Cutting Management 353.2.5 Weed Control 353.2.6 Insect, Pest, and Disease Control 373.3 Jatropha Performance 383.3.1 Plant Height and Canopy Width 383.3.2 First Flowering Day 403.3.3 Rainfall 413.3.4 Harvesting 433.3.5 Seed Yield and Weight of 100-Seed 453.4 Conclusions 47Acknowledgments 47References 474 Castor Oil (Ricinus communis) 51Is Fatimah, Suresh Sagadevan, Baranya Murugan, and Oki Muraza4.1 Source and Cultivation of the Castor Plant 514.2 Castor Oil Production 544.2.1 Cultivating and Harvesting Ricinus communis 544.2.2 Extraction of Castor Oil 574.2.3 Refining of Castor Oil 594.2.4 Standardization of Castor Oil 604.3 Castor Oil Products 604.3.1 Hydrogenated Castor Oil 604.3.2 Biodiesel from Castor Oil 614.3.3 Polymer from Castor Oil 674.3.4 Plasticizer from Castor Oil 674.3.5 Biolubricant from Castor Oil 694.3.6 Pharmaceutical Solvent from Castor Oil 724.4 Conclusions 73References 735 Nyamplung (Calophyllum inophyllum) Oil 79Nurul Sabrena Hanafi, Misri Gozan, and Suraini Abd-Aziz5.1 Introduction 795.2 Nyamplung (Calophyllum inophyllum) 805.2.1 Characteristic of Nyamplung Seed Oil 815.2.2 Extraction of Nyamplung Seed Oil 825.2.2.1 Mechanical Extraction 835.2.2.2 Solvent Oil Extraction (Chemical Extraction) 835.2.3 Applications of Nyamplung Seed Oil 835.2.3.1 Medicinal Purposes 845.2.3.2 Cosmetic Ingredient 845.2.3.3 Biodiesel 855.3 Potential of Nyamplung Seed Oil as Biolubricant 865.3.1 Reactions Involved in Biolubricants Manufacturing 865.3.1.1 Transesterification 865.3.1.2 Epoxidation 875.3.2 Emerging Area of Biolubricant Industries Using Alternative Oil/Seed Oil 885.3.2.1 Applications of Biolubricant 895.3.2.2 Chemical Modification of Biolubricant 895.4 Conclusions 91References 926 Coconut Oil 99Muhammad A. Darmawan, Kiman Siregar, and Misri Gozan6.1 Introduction 996.2 Extraction Process of Coconut Oil 1006.2.1 Dry Extraction Process 1006.2.1.1 Coconut Testa Oil 1026.2.1.2 Copra Oil 1026.2.2 Coconut Refining Process 1026.2.2.1 Chemical Refining Process 1026.2.2.2 Physical Refining Process 1036.2.3 Wet Extraction Process 1036.2.3.1 Heat and Cold Extraction of Virgin Coconut Oil 1036.2.3.2 Fermentation and Enzymatic Process of Virgin Coconut Oil 1046.3 Physicochemical and Chemical Compositions of Coconut Oil 1056.4 The Properties of Coconut Fruit 1086.5 Health Benefits of Virgin Coconut Oil 1116.5.1 Virgin Coconut Oil Effects on Artery Disease 1116.5.2 Antioxidant Activity of Virgin Coconut Oil 1116.5.3 Antidiabetic Activity of Virgin Coconut Oil 1126.5.4 Antimicrobial Activity of Virgin Coconut Oil 1126.6 Coconut Oil as Fuel 1126.7 Coconut Oil as Cooking Oil 1136.8 Productivity and Problems in Coconut Plantation 1146.8.1 Productivity of Coconut Plantation in Indonesia 1146.8.2 Problems of Coconut Plantation and Industry in Indonesia 1156.9 Conclusions 116References 116Part II Pretreatment 1237 Efficient Physical and Chemical Pretreatment of Lignocellulosic Biomass 125Liping Tan, Jian Zhao, and Yinbo Qu7.1 Introduction 1257.2 Type of Physical and Chemical Pretreatment 1267.2.1 Bisulfite Pretreatment 1267.2.2 Formiline Pretreatment 1287.2.3 Hydrothermal Pretreatment 1287.2.4 Deep Eutectic Solvents (DES) Pretreatment 1297.2.5 Comparison of Physical and Chemical Pretreatment Methods 1307.2.6 Combinations of Physical and Chemical Pretreatment 1337.3 Conclusions 135Acknowledgment 135References 1358 Ionic Solution Pretreatment of Lignocellulosic Biomass 141Chien-Yuan Su, Wei-Chun Hung, Chiung-Fang Liu, Bo-Jhih Lin, and Hou-Peng Wan8.1 Overview of Biomass Hydrolysis 1418.1.1 Acid Hydrolysis 1438.1.2 Ionic Liquid Hydrolysis 1448.1.2.1 Development and Principle of Ionic Liquid Hydrolysis 1448.1.2.2 Ionic Solution Hydrolysis 1458.2 Case Study of Ionic Solution Hydrolysis 1478.2.1 Feedstock Analysis and Dissolution Efficiency 1478.2.2 Sugar Yields from Various Biomass via Ionic Solution Hydrolysis 1508.2.3 Purification of Hydrolysis Products 1518.2.3.1 Liquid–Liquid Extraction 1518.2.3.2 Reactive Distillation 1518.2.3.3 Ion Exclusion Chromatography and Membrane Filtration 1538.2.4 Comparison of Hydrolysis Pretreatment Technologies and Summary 155Acknowledgment 157References 1579 Biological Pretreatment of Lignocellulosic Biomass 161Sehanat Prasongsuk, Wichanee Bankeeree, Pongtharin Lotrakul, Suraini Abd-Aziz, and Hunsa Punnapayak9.1 Introduction 1619.2 Microorganisms and Enzymes Involved in Biological Pretreatment 1629.2.1 Fungal Pretreatment 1649.2.2 Enzymatic Pretreatment 1659.3 Factors Affecting Biological Pretreatment 1689.3.1 Cultivation Condition 1689.3.2 Incubation Time 1689.3.3 Moisture Content 1689.3.4 pH and Temperature 1689.4 Biological Pretreatment of Lignocellulosic Biomass into Value-Added Products 1699.4.1 Bioconversion into Fermentable Sugar for Bioethanol Production 1699.4.2 Biogas Production 1719.5 Conclusions 172Acknowledgment 173References 17310 Lignin-Degrading Enzymes 179Adriana C. Lee, Mohamad Faizal Ibrahim, and Suraini Abd-Aziz10.1 Introduction 17910.2 Lignin Types and Structures 18010.3 Lignin-Degrading Enzymes (LDEs) 18110.3.1 Lignin Peroxidase or Ligninase (LiP) 18110.3.2 Manganese Peroxidase (MnP) 18310.3.3 Versatile Peroxidase (VP) 18510.3.4 Dye-Decolorizing Peroxidases (DyPs) 18510.3.5 Laccase 18610.3.6 New Enzymatic Delignification Activities 18910.3.6.1 β-Etherases (Glutathione-Dependent Lignin-Degrading Enzyme) 18910.3.6.2 Biphenyl-Binding Enzyme Cleavage Systems 19010.3.6.3 Enzyme O-Demethylation Networks 19010.3.6.4 Activities of General Oxidative 19010.4 Application of LDE in Biorefinery Pretreatment 19110.5 Conclusions 194References 19411 Enzymes for Hemicellulose Degradation 199Wichanee Bankeeree, Sehanat Prasongsuk, Pongtharin Lotrakul, Suraini Abd-Aziz, and Hunsa Punnapayak11.1 Introduction 19911.2 Hemicellulolytic Enzymes 20011.3 Xylanolytic Enzyme Classification 20111.4 Catalytic Mechanisms 20411.5 Sources and Properties of Xylanolytic Enzymes 20511.5.1 Bacterial Xylanolytic Enzymes 20511.5.2 Fungal Xylanolytic Enzymes 20711.6 Potential Biotechnological Applications 20911.6.1 Biorefinery 20911.6.2 Pulp and Paper Industry 21111.6.3 Biotransformation 21211.7 Conclusions 213Acknowledgment 214References 21412 Cellulase from Oil Palm Biomass 221Jeong Eun Hyeon and Sung Ok Han12.1 Biological Pretreatment and Cellulase 22112.2 Cellulases 22212.2.1 Endoglucanase (1,4-D-glucan-4-glucanohydrolase; EC 3.2.1.4) 22312.2.2 Exocellobiohydrolase (1,4-D-glucan glucohydrolase; EC 3.2.1.74) 22412.2.3 β-Glucosidase (D-glucoside glucohydrolase; EC 3.2.1.21) 22512.3 Synergistic Effect by Combination of Various Cellulases 22612.3.1 Cellulosome 22612.3.2 Artificial Cellulosome 22912.4 Industrial Strain for Cellulases Production 23012.4.1 Cellulases Production by Fungal Cellulase System 23012.4.2 Cellulases Production by Bacterial Cellulase Systems 23212.5 Conclusions 233Acknowledgment 233References 234Part III Generation of Bioenergy 23913 Biogas Generation in the Palm Oil Mill 241Muhammad Y. Arya, Muhammad A. Kholiq, Udin Hasanudin, and Misri Gozan13.1 Introduction 24113.2 POME Characterization 24313.3 POME Pretreatment 24313.3.1 Acidified POME 24613.3.2 Ash Addition 24613.3.3 Coagulation–Flocculation 24813.3.4 De-oiling 24813.3.5 Dissolved Air Flotation 24913.3.6 POME Sedimentation 24913.3.7 Thermal Pretreatment 24913.3.8 Other Pretreatments 24913.4 Digester Type 25013.4.1 Anaerobic Pond/Lagoon 25013.4.2 Anaerobic Filtration 25113.4.3 Fluidized Bed Reactor 25313.4.4 Upflow Anaerobic Sludge Blanket (UASB) 25313.4.5 Anaerobic Baffled Reactor 25313.5 Operating Conditions 25313.5.1 Substrate Characterization 25313.5.2 pH and Alkalinity 25413.5.3 Organic Loading Rate (OLR) and Hydraulic Retention Time (HRT) 25413.5.4 Temperature 25513.5.5 Other Operating Conditions 25613.6 Biogas Purification 25713.7 Conclusions 257References 25814 Biodiesel Refinery from Jatropha 265Penjit Srinophakun, Anusith Thanapimmetha, and Maythee Saisriyoot14.1 Introduction 26514.2 Jatropha Biodiesel 26514.2.1 Biodiesel Standard 27314.2.2 Oxidation Stability 27314.2.3 The Changes of Biodiesel Properties During Long-Term Storage 27814.3 Conclusions 281Acknowledgment 282References 28315 Bioethanol from Oil Producing Plants 287Yu-Shen Cheng, Kittipong Rattanaporn, and Malinee Sriariyanun15.1 Introduction 28715.2 Plant Components Derived from Oil Producing Plants as the Biomass Resources 29015.2.1 Oil Producing Plants 29015.2.2 Oil Meals/Cakes Derived from Oilseed as Lignocellulosic Biomass 29115.2.3 Other Lignocellulosic Residues Derived from Oil Plants 29315.3 Conversion of Oil Plant-Derived Lignocellulosic Biomass to Bioethanol 29415.3.1 Structure of Lignocellulosic Biomass Derived from Oil Plants 29415.3.2 Lignocellulosic Biomass Pretreatment and Enzymatic Hydrolyses 29615.3.3 Bioethanol Production from Oil Producing Plant 29915.4 Conclusions 300References 30016 Biobutanol Production from Oil Palm Biomass 307Mohamad Faizal Ibrahim, Nor A. Shaharuddin, Nurul H. Alias, Mohd A. Jenol, Suraini Abd-Aziz, and Lai-Yee Phang16.1 Introduction 30716.2 Oil Palm Biomass 30816.3 Biobutanol 31016.4 Biobutanol Production 31216.4.1 Biobutanol-Producing Bacteria 31216.4.1.1 Clostridium sp. 31216.4.1.2 Lactobacillus 31416.4.1.3 Escherichia coli 31516.4.2 Factors Affecting Biobutanol Production 31516.4.2.1 Effect of Nitrogen Source 31516.4.2.2 Effect of pH 31516.4.2.3 Effect of Temperature 31616.4.2.4 Effect of Carbon Source 31616.5 Biobutanol Production from Oil Palm Biomass 31716.6 Conclusions 320References 32117 Biochar from Oil Palm Biomass 325Z. Nahrul Hayawin and Juferi Idris17.1 Introduction 32517.2 Oil Palm Biomass in Malaysia 32617.3 Oil Palm Biochar Production 32617.3.1 Mechanistic Aspects of Pyrolysis 32617.3.2 Pyrolysis Process Parameters Affecting the Quality and Quantity of Biochar Production 32717.3.3 Technologies for Biochar Production 32917.3.3.1 Conventional Pyrolysis 32917.3.3.2 Microwave Pyrolysis 32917.3.4 Application of Biochar 33117.3.4.1 Environmental Remediation 33117.3.4.2 Agricultural Application 33117.3.4.3 Energy Purposes 33217.4 Safety and Environmental Considerations 33317.4.1 Safety Consideration and Environmental Impacts in the Application of Biochar 33317.4.2 Safety Consideration and Environmental Impact in Handling and Storing Oil palm Biomass Feedstock 33417.4.3 Safety Consideration and Environmental Impacts in Biochar Production by Pyrolysis Process 33417.5 Biochar Utilization and Marketing 33517.5.1 Quality of Biochar 33517.5.2 Physical and Chemical Characteristics of Biochar 33517.5.3 Adsorption Capacity 33617.5.4 Economic Analysis 33617.5.5 Major Challenges in Promoting Biochar 33717.5.5.1 Cost and Production Complications 33717.5.5.2 Environmental Factors 33817.5.5.3 Public Acceptance 33817.5.5.4 Marketability and Commercialization Issues 33917.6 Conclusions 339References 33918 Fuel Pellet from Oil Producing Plants 345Rizal Alamsyah18.1 Introduction 34518.2 Production of Fuel Pellet 34718.2.1 Energy and Proximate Analysis 34718.2.2 Size Reduction and Screening 34818.2.3 Drying and Weighing 34818.2.4 Mixing 34918.2.5 Pelletizing 34918.2.6 Cooling and Packing 34918.3 Pellet Quality 35018.3.1 Ash Content 35018.3.2 Ash Melting Temperature 35118.3.3 Length, Diameter, and Bulk Density 35118.3.4 Dust 35218.3.5 Caloric Value and Moisture Content 35218.3.6 Mechanical Durability 35218.3.7 Nitrogen, Sulfur, Chlorine Content, and Heavy Metals 35318.4 Pilot Plant-Scale Biomass Pellet Experiment 35318.5 Gasification of Biomass Pellets to Produce Synthetic Gas (Syngas) and Emission Test 35618.5.1 Gasification 35618.5.2 Emissions Test 35718.6 Biomass Pellet Processing Equipment 35918.6.1 Chaff Cutter 35918.6.2 Hammer Mill 36118.6.3 Cyclone Dust Collector 36118.6.4 Paddle Mixer 36218.6.5 Pellet Machine (Pelletizer) 36218.6.6 Cooler 36318.6.7 Packing Machine (Bagging Scale) 36418.7 Conclusions 364References 36419 Biohydrogen from Palm Oil Mill Effluent 369Safa Senan Mahmod, Peer Mohamed Abdul, and Jamaliah Md. Jahim19.1 Introduction 36919.2 Biohydrogen-Producing Bacteria 37119.3 Strategies to Increase Biohydrogen Production from POME 37419.3.1 Operating Conditions Optimization: Hydraulic Retention Time (HRT) and Temperature on Biohydrogen Production 37419.3.1.1 Effect of Temperature 37419.3.1.2 Effect of Different Hydraulic Retention Times (HRTs) 37619.3.2 Microbial Cells Immobilization 37819.3.3 Roles of Additives 38019.4 Conclusions 38319.5 Acknowledgments 383References 383Volume 2Preface xiiiAbout the Editors xv20 A Glance on the Generation of Biobased Chemicals, Bioproducts and Economic Analysis of Oil Producing Plant 387Misri Gozan and Suraini Abd-AzizPart IV Generation of Biobased Chemicals 39721 Bio-oil from Tobacco Plant 399Andre F.P. Harahap, Ahmad Fauzantoro, and Misri Gozan22 Biosurfactant from Oil Producing Plant 421Zaharah Ibrahim, Siti Halimah Hasmoni, Shafinaz Shahir, Lai-Yee Phang, Nurashikin Ihsan, and Madihah Md Salleh23 Palm Catanionic Surfactant for Drug Delivery Application 445Wen Huei Lim, Xiou Shuang Yong, Lai-Yee Phang, and Noorjahan Banu Alitheen24 Glycerol and Derivatives 469Erliza Hambali, Rista Fitria, and Vonny I. Sari25 Biovanillin from Oil Palm Biomass 493Suraini Abd-Aziz, Mohd Azwan Jenol, and Illy Kamaliah Ramle26 Diacids from Oil Producing Plant 515Is Fatimah, Ganjar Fadillah, Oki Muraza, and Teuku M.I. Mahlia27 Bioplastic Production from Oil Producing Plants 543Lai-Yee Phang, Mitra Mohammadi, Mohd Azwan Jenol, and Misri Gozan28 Plant Oil-Based Polyurethane 563K. H. Badri and Amamer Redhwan29 Bioresins from Oil Producing Plants 587Misri Gozan, Agustino Zulys, and Hosta ArdhyanantaPart V Generation of Other Bioproducts 60530 Biocompost from Oil Producing Plants 607Adibah Yahya, Nurshafika Abd Khalid, and Madihah Md Salleh31 Animal Feed from Oil Producing Plants 631Siswa Setyahadi32 Amino Acids from Oil Producing Plants 653Huszalina Hussin, Nurul S. Hanafi, Adriana C. Lee, Madihah Md Salleh, Shu-Cuen Sam, and Suraini Abd-AzizPart VI Economics Analysis of Oil Producing Plants 67333 Technical and Economic Aspects of Oil Producing Plants 675Misri Gozan and Lai-Yee Phang34 Economic Impact 699Nugroho A. Sasongko and Rachmawan BudiartoIndex 723
Du kanske också är intresserad av
Chemical Substitutes from Agricultural and Industrial By-Products
Suraini Abd-Aziz, Misri Gozan, Mohamad Faizal Ibrahim, Lai-Yee Phang, Malaysia) Abd-Aziz, Suraini (Universiti Putra Malaysia, Indonesia) Gozan, Misri (Universitas Indonesia, Malaysia) Ibrahim, Mohamad Faizal (Universiti Putra Malaysia, Malaysia) Phang, Lai-Yee (Universiti Putra Malaysia
2 299 kr
Zeolites and Catalysis
Jiri Cejka, Avelino Corma, Stacey Zones, Czech Republic) Cejka, Jiri (Academy of Sciences of the Czech Republic, Prague, Valencia) Corma, Avelino (Instituto de Tecnologia Quimica, Universidad Politecnica de Valencia, USA) Zones, Stacey (Chevron Texaco Energy Research and Technology Company, Richmond
4 809 kr