Biomass Energy with Carbon Capture and Storage (BECCS)
Unlocking Negative Emissions
Inbunden, Engelska, 2018
Av Clair Gough, Patricia Thornley, Sarah Mander, Naomi Vaughan, Amanda Lea-Langton
1 509 kr
Produktinformation
- Utgivningsdatum2018-08-31
- Mått160 x 246 x 20 mm
- Vikt680 g
- SpråkEngelska
- Antal sidor336
- FörlagJohn Wiley & Sons Inc
- EAN9781119237723
Tillhör följande kategorier
Clair Gough is a Research Fellow at the Tyndall Centre for Climate Change Research in the School of Mechanical, Aerospace and Civil Engineering at the University of Manchester. Patricia Thornley is a Professor of sustainable energy systems in the School of Mechanical, Aerospace and Civil Engineering at the University of Manchester and director of the UK's Supergen Bioenergy Hub. Sarah Mander is a Senior Research Fellow in the School of Mechanical, Aerospace and Civil Engineering at the Tyndall Centre for Climate Change Research at the University of Manchester. Naomi Vaughan is a lecturer in climate change at the Tyndall Centre for Climate Change Research at the School of Environmental Sciences at the University of East Anglia. Amanda Lea-Langton is a Lecturer in bioenergy engineering in the School of Mechanical, Aerospace and Civil Engineering, University of Manchester.
- List of Contributors xiiiForeword xviiPreface xixList of Abbreviations/Acronyms xxiPart I BECCS Technologies 11 Understanding Negative Emissions From BECCS 3Clair Gough, Sarah Mander, Patricia Thornley, Amanda Lea‐Langton and Naomi Vaughan1.1 Introduction 31.2 Climate‐Change Mitigation 41.3 Negative Emissions Technologies 71.4 Why BECCS? 81.5 Structure of the Book 101.5.1 Part I: BECCS Technologies 101.5.2 Part II: BECCS System Assessments 121.5.3 Part III: BECCS in the Energy System 131.5.4 Part IV: Summary and Conclusions 14References 142 The Supply of Biomass for Bioenergy Systems 17Andrew Welfle and Raphael Slade2.1 Introduction 172.2 Biomass Resource Demand 182.3 Resource Demand for BECCS Technologies 182.4 Forecasting the Availability of Biomass Resources 192.4.1 Modelling Non‐Renewable Resources 202.4.2 Modelling Renewable Resources 212.4.2.1 Biomass Resource Modelling 212.4.3 Modelling Approaches – Bottom‐Up versus Top‐Down 232.5 Methods for Forecasting the Availability of Energy Crop Resources 242.6 Forecasting the Availability of Wastes and Residues From Ongoing Processes 252.7 Forecasting the Availability of Forestry Resources 262.8 Forecasting the Availability of Waste Resources 272.9 Biomass Resource Availability 282.10 Variability in Biomass Resource Forecasts 312.11 Biomass Supply and Demand Regions, and Key Trade Flows 332.11.1 Trade Hub Europe 332.11.2 Bioethanol – Key Global Trade Flows 342.11.3 Biodiesel – Key Global Trade Flows 342.11.4 Wood Pellets – Key Global Trade Flows 352.11.5 Wood Chip – Key Global Trade Flows 352.12 Global Biomass Trade Limitations and Uncertainty 362.12.1 Technical Barriers 362.12.2 Economic and Trade Barriers 362.12.3 Logistical Barriers 372.12.4 Regulatory Barriers 372.12.5 Geopolitical Barriers 382.13 Sustainability of Global Biomass Resource Production 382.13.1 Potential Land‐Use Change Impacts 382.13.2 The ‘Land for Food versus Land for Energy’ Question 392.13.3 Potential Social Impacts 392.13.4 Potential Ecosystem and Biodiversity Impacts 402.13.5 Potential Water Impacts 402.13.6 Potential Air‐Quality Impacts 412.14 Conclusions – Biomass Resource Potential and BECCS 41References 423 Post‐combustion and Oxy‐combustion Technologies 47Karen N. Finney, Hannah Chalmers, Mathieu Lucquiaud, Juan Riaza, János Szuhánszki and Bill Buschle3.1 Introduction 473.2 Air Firing with Post‐combustion Capture 483.2.1 Wet Scrubbing Technologies: Solvent‐Based Capture Using Chemical Absorption 493.2.1.1 Amine‐Based Capture 503.2.1.2 Steam Extraction for Solvent Regeneration 513.2.2 Membrane Separation 513.2.3 Brief Overview of Other Separation Methods 523.3 Oxy‐Fuel Combustion 523.3.1 Oxy‐Combustion of Biomass Using Flue Gas Recirculation 533.3.2 Enriched‐Air Combustion 543.4 Challenges Associated with Biomass Utilisation Under BECCS Operating Conditions 553.4.1 Impacts of Biomass Trace Elements on Post‐combustion Capture Performance 553.4.1.1 Alkali Metals 553.4.1.2 Transition Metals 563.4.1.3 Acidic Elements 573.4.1.4 Particulate Matter 573.4.1.5 Biomass‐Specific Solvents for Post‐combustion BECCS 573.4.2 Biomass Combustion Challenges for Oxy‐Fuel Capture 583.4.2.1 Fuel Milling 593.4.2.2 Flame Temperature 593.4.2.3 Heat Transfer 593.4.2.4 Particle Heating, Ignition and Flame Propagation 593.4.2.5 Burnout 603.4.2.6 Emissions 603.4.2.7 Corrosion 603.5 Summary and Conclusions: Synopsis of Technical Knowledge and Assessment of Deployment Potential 61References 634 Pre‐combustion Technologies 67Amanda Lea‐Langton and Gordon Andrews4.1 Introduction 674.2 The Integrated Gasification Combined Cycle (IGCC) 684.3 Gasification of Solid Fuels 694.4 Carbon Dioxide Separation Technologies 764.4.1 Physical Absorption 764.4.2 Adsorption Processes 774.4.3 Clathrate Hydrates 774.4.4 Membrane Technologies 774.4.5 Cryogenic Separation 784.4.6 Post‐combustion Chilled Ammonia 784.5 Chemical Looping Processes 784.6 Existing Schemes 794.7 Modelling of IGCC Plant Thermal Efficiency With and WithoutPre‐combustion CCS 804.8 Summary and Research Challenges 85References 875 Techno‐economics of Biomass‐based Power Generation with CCS Technologies for Deployment in 2050 93Amit Bhave, Paul Fennell, Niall Mac Dowell, Nilay Shah and Richard H.S. Taylor5.1 Introduction 945.2 Case Study Analysis 101Acknowledgements 113References 113Part II BECCS System Assessments 1156 Life Cycle Assessment 117Temitope Falano and Patricia Thornley6.1 Introduction 1176.2 Rationale for Supply‐Chain Life‐Cycle Assessment 1176.3 Variability in Life‐Cycle Assessment of Bioenergy Systems 1206.3.1 Variability Related to Scope of System 1206.3.1.1 Land‐Use Emissions 1206.3.1.2 Land‐Use Change Emissions 1216.3.1.3 Indirect Land‐Use Change Emissions 1216.3.2 Variability Related to Methodology 1226.3.3 Variability Related to System Definition 1226.3.4 Variability Related to Assumptions 1226.4 Published LCAs of BECCS 1236.5 Sensitivity Analysis of Reported Carbon Savings to Key System Parameters 1246.5.1 Impact of CO2 Capture Efficiency 1246.5.2 Variation of Energy Requirement Associated with CO2 Capture 1256.5.3 Variation of Biomass Yield 1256.6 Conclusions 125References 1267 System Characterisation of Carbon Capture and Storage (CCS) Systems 129Geoffrey P. Hammond7.1 Introduction 1297.1.1 Background 1297.1.2 The Issues Considered 1317.2 CCS Process Characterisation, Innovation and Deployment 1317.2.1 CCS Process Characterisation 1317.2.2 CCS Innovation and Deployment 1337.3 CCS Options for the United Kingdom 1357.4 The Sustainability Assessment Context 1367.4.1.1 The Environmental Pillar 1367.4.1.2 The Economic Pillar 1377.4.1.3 The Social Pillar 1377.5 CCS Performance Metrics 1387.5.1 Energy Analysis and Metrics 1387.5.2 Carbon Accounting and Related Parameters 1397.5.3 Economic Appraisal and Indicators 1407.6 CCS System Characterisation 1417.6.1 CO2 Capture 1417.6.1.1 Technical Exemplars 1417.6.1.2 Energy Metrics 1417.6.1.3 Carbon Emissions 1427.6.1.4 Economic Indicators 1457.6.2 CO2 Transport and Clustering 1477.6.3 CO2 Storage 1497.6.3.1 Storage Options and Capacities 1497.6.3.2 Storage Site Risks, Environmental Impacts and Monitoring 1507.6.3.3 Storage Economics 1527.6.4 Whole CCS Chain Assessment 1537.7 Concluding Remarks 156Acknowledgments 157References 1588 The System Value of Deploying Bioenergy with CCS (BECCS) in the United Kingdom 163Geraldine Newton‐Cross and Dennis Gammer8.1 Background 1638.1.1 Why BECCS? 1638.1.2 Critical Knowledge Gaps 1688.2 Context 1688.2.1 Bioenergy 1688.2.2 Bioenergy with CCS 1698.3 Progressing our Understanding of the Key Uncertainties Associated with BECCS 1708.3.1 Can a Sufficient Level of BECCS Be Deployed in the United Kingdom to Support Cost-Effective Decarbonisation Pathways for the United Kingdom out to 2050? 1708.3.2 What are the Right Combinations of Feedstock, Preprocessing, Conversion and Carbon‐Capture Technologies to Deploy for Bioenergy Production in the United Kingdom? 1748.3.2.1 Optimising Feedstock Properties for Future Bioenergy Conversion Technologies 1748.3.2.2 BECCS Value Chains: What Carbon‐Capture Technologies Do we Need to Develop? 1758.3.3 How can we Deliver the Greatest Emissions Savings from Bioenergy and BECCS in the United Kingdom? 1768.3.4 How Much CO2 Could Be Stored from UK Sources and How Do we Monitor These Stores Efficiently and Safely? 1788.3.4.1 Storage Potential 1788.3.4.2 Managing the Risks of Storage 1788.4 Conclusion: Completing the BECCS Picture 1808.4.1 Next Steps 180References 181Part III BECCS in the Energy System 1859 The Climate‐Change Mitigation Challenge 187Sarah Mander, Kevin Anderson, Alice Larkin, Clair Gough and Naomi Vaughan9.1 Introduction 1879.2 Cumulative Emissions and Atmospheric CO2 Concentration for 2°C Commitments 1889.3 The Role of BECCS for Climate‐Change Mitigation – A Summary of BECCS within Integrated Assessment Modelling 1909.3.1 Key Assumptions 1949.4 Implications and Consequences of BECCS 1949.5 Conclusions: Can BECCS Deliver what’s Expected of it? 199References 20010 The Future for Bioenergy Systems: The Role of BECCS? 205Gabrial Anandarajah, Olivier Dessens and Will McDowall10.1 Introduction 20510.2 Methodology 20610.2.1 TIAM‐UCL 20610.2.2 Representation of Bioenergy and CCS Technologies in TIAM‐UCL 20810.2.3 Scenario Definitions 20910.3 Results and Discussions 21110.3.1 2°C Scenarios With and Without BECCS 21110.3.2 Sensitivity Around Availability of Sustainable Bioenergy 21510.3.3 1.5 °C Scenarios 22110.4 Discussion and Conclusions 224References 22511 Policy Frameworks and Supply‐Chain Accounting 227Patricia Thornley and Alison Mohr11.1 Introduction 22711.2 The Origin and Use of Supply‐Chain Analysis in Bioenergy Systems 22811.2.1 Rationale for Systems‐Level Evaluation 22811.2.2 Importance and Significance of Scope of System 23011.2.3 Importance and Significance of Breadth of Analysis 23111.3 Policy Options 23211.3.1 Objectives of BECCS Policy 23211.3.2 Review of Existing Policy Frameworks 23411.3.2.1 International Policy Frameworks 23411.3.2.1.1 United Nations Framework Convention on Climate Change 23411.3.2.1.2 EU Emissions Trading System 23611.3.2.1.3 Renewable Energy Directive and Fuel Quality Directive 23611.3.2.2 National Policy Frameworks in the United Kingdom 23711.3.2.2.1 Renewables Obligation and Contracts for Difference 23711.3.2.2.2 Renewable Transport Fuel Obligation 23811.4 Ensuring Environmental, Economic and Social Sustainability of a BECCS System 23811.4.1 Environmental Sustainability and System Scope 23811.4.2 Economic Sustainability and System Scope 24011.4.3 Social Sustainability and System Scope 24111.4.4 Trade‐Offs Between Different Sustainability Components 24311.5 Governance of BECCS Systems 24511.6 Conclusions: The Future of BECCS Policy and Governance 247References 24812 Social and Ethical Dimensions of BECCS 251Clair Gough, Leslie Mabon and Sarah Mander12.1 Introduction 25112.2 Fossil Fuels and BECCS 25212.3 Alternative Approaches 25412.3.1 Negative Emissions Approaches and CDR 25412.3.2 Different Mitigation Approaches 25612.4 Sustainable Decarbonisation 25712.5 Societal Responses 25812.6 Justice 26212.6.1 Distributional Justice 26212.6.2 Procedural Justice 26312.6.3 Financial Justice 26512.6.4 Intergenerational Justice 26712.6.5 Summary 26812.7 Summary 269References 27013 Unlocking Negative Emissions 277Clair Gough, Patricia Thornley, Sarah Mander, Naomi Vaughan and Amanda Lea‐Langton13.1 Introduction 27713.2 Summary of Chapters 27713.3 Unlocking Negative Emissions: System‐Level Challenges 28213.3.1 Terminology, Scale and Quantification 28213.3.2 Non‐Technological Challenges 28413.3.3 Technical Challenges 28713.4 Can Negative Emissions be Unlocked? 28713.4.1 Do we Need This Technology? 28813.4.2 Can it Work? 28813.4.3 Does the Focus on BECCS Distract From the Imperative to Radically Reduce Demand and Transform the Global Energy System? 28813.4.4 How Can BECCS Unlock Negative Emissions? 28913.5 Summing Up 290References 290Index 291