Biodegradable Green Composites
Inbunden, Engelska, 2016
3 089 kr
Produktinformation
- Utgivningsdatum2016-04-19
- Mått160 x 236 x 31 mm
- Vikt771 g
- FormatInbunden
- SpråkEngelska
- Antal sidor368
- FörlagJohn Wiley & Sons Inc
- ISBN9781118911099
Tillhör följande kategorier
Susheel Kalia is Researcher in Department of Civil, Chemical, Environmental and Materials Engineering at University of Bologna, Italy. Kalia's research is in the field of biocomposites, nanocomposites, conducting polymers, cellulose nanofibers, inorganic nanoparticles, hybrid materials, hydrogels and cryogenics. The author of many international papers, articles and chapters, he has published many review articles on polymeric composites based on natural fibers. Kalia's editorial activities include work as a reviewer and memberships of editorial boards for various international journals. He is also a member of a number of professional organizations, including the Asian Polymer Association, Indian Cryogenics Council, the Society for Polymer Science, Indian Society of Analytical Scientists, and the International Association of Advanced Materials.
- Contributors xiiPreface xiv1 Biodegradable Green Composites 1Sreerag Gopi, Anitha Pius, and Sabu Thomas1.1 Introduction 21.2 Biodegradable Polymers 21.2.1 Starch 21.2.2 Cellulose 41.2.3 Chitin and Chitosan 41.2.4 Proteins 51.3 Nanofillers for Composites 51.3.1 Cellulose‐Based Nanofillers 51.3.2 Carbon Nanotube 71.3.3 Clay 71.3.4 Functional Fillers 71.4 Nanocomposites from Renewable Resources 81.4.1 Cellulose Nanocomposites 91.4.2 CNT Nanocomposites 91.4.3 Clay Nanocomposites 101.4.4 Functional Nanocomposites 101.5 Processing of Green Composites 101.6 Applications 111.6.1 Packaging 111.6.2 Electronics, Sensor, and Energy Applications 111.6.3 Medicinal Applications 121.7 Conclusion 12References 122 Surface Modification of Natural Fibers Using Plasma Treatment 18Danmei Sun2.1 Introduction 192.1.1 Natural Fiber Materials and their Properties 192.1.2 Conventional Modification Methods and Drawbacks 192.1.3 Plasma Environment and the Advantages of Plasma Surface Modification 202.2 Mechanisms of Plasma Treatment and Types of Plasma Machines 212.2.1 Principle of Plasma Surface Modification 212.2.2 Interactive Mechanisms between Plasma and Substrates 222.2.3 Types of Plasma Treatment Systems 242.3 Effects and Applications of Plasma Treatment 272.3.1 Surface Morphology and Chemical Composition Change 272.3.2 Improved Hydrophilicity and Efficiency in Aqueous Processes 282.3.3 Improved Hydrophobicity 312.3.4 Mechanical Properties Affected by Plasma Treatment 332.3.5 Medical Applications of Plasma Treatment 342.3.6 Plasma‐Modified Fibers in Polymer Composites 342.3.7 Other Areas of Applications 352.4 Conclusions and Industrial Implications 35References 353 Reinforcing Potential of Enzymatically Modified Natural Fibers 40Levent Onal and Yekta Karaduman3.1 Introduction 413.2 Enzymes 423.2.1 A Brief History 423.2.2 Classification and Nomenclature 433.2.3 Enzyme Structure 433.2.4 Enzymatic Catalysis 443.3 Natural Fibers as Enzyme Substrates 453.3.1 Physical Properties of Lignocellulosic Fibers 463.3.2 Chemical Properties and Composition of Lignocellulosic Fibers 473.3.2.1 Cellulose 473.3.2.2 Hemicellulose 493.3.2.3 Lignin 493.3.2.4 Pectin 503.3.2.5 Other Aromatic Compounds 513.3.2.6 Fats, Waxes, and Lipids 513.4 Types of Enzymes Used in Natural Fiber Modification 513.4.1 Cellulases 513.4.2 Xylanases 523.4.3 Pectinases 533.4.4 Laccases 533.5 Effect of Enzymatic Treatment on the Structure and Properties of Natural Fibers 543.6 Polymer Composites Reinforced with Enzymatically Modified Natural Fibers 623.7 Enzyme‐Assisted Biografting Methods 693.8 Conclusions 73References 744 Recent Developments in Surface Modification of Natural Fibers for their use in Biocomposites 80Jaspreet Kaur Bhatia, Balbir Singh Kaith, and Susheel Kalia4.1 Introduction 814.2 Biocomposites 824.2.1 Classification: Biomass Derived and Petroleum‐Derived Matrix 834.2.2 Advantage over Traditional Composites 864.3 Natural Fiber: Structure and Composition 864.4 Surface Modification of Natural Fibers 894.4.1 Silylation, Esterification, and other Surface Chemical Modifications 894.4.2 Noncovalent Surface Chemical Modifications 934.4.3 Cationization 954.4.4 Polymer Grafting 954.4.5 TEMPO‐Mediated Oxidation 984.4.6 Green Modification 1004.5 Biocomposites: Recent Trends and Opportunities for the Future 1004.6 Biodegradability of Biocomposites 1014.7 Conclusions 103References 1055 Nanocellulose‐Based Green Nanocomposite Materials 118Qi Zhou and Núria Butchosa5.1 Introduction 1195.2 Nanocellulose 1195.2.1 Cellulose Nanocrystals 1205.2.2 Cellulose Nanofibrils 1205.2.3 Bacterial Cellulose 1225.3 Composite Matrices 1225.3.1 Cellulose and Cellulose Derivatives 1225.3.2 Hemicelluloses and other Polysaccharides 1235.3.3 Starch 1245.3.4 Chitin and Chitosan 1255.3.5 Proteins 1265.3.6 Polylactic Acid and Poly(ε‐Caprolactone) 1275.3.7 Inorganic Nanoparticles 1285.4 Composite Properties 1295.4.1 Thermal and Mechanical Properties 1295.4.2 Barrier Properties 1305.4.3 Antimicrobial Properties 1335.4.4 Optical Properties 1345.5 Conclusions 136References 1376 Poly(Lactic Acid) Hybrid Green Composites 149Mahbub Hasan, Azman Hassan, and Zainoha Zakaria6.1 Introduction 1506.2 Manufacturing Techniques of PLA Hybrid Green Composites 1516.2.1 Melt Mixing/Blending 1516.2.2 Extrusion/Injection Molding 1536.2.3 Other Techniques 1556.3 Properties of PLA Hybrid Green Composites 1566.3.1 Mechanical Properties 1566.3.1.1 Tensile Properties 1566.3.1.2 Flexural Properties 1576.3.1.3 Impact Strength 1586.3.2 Dynamic Mechanical Properties 1586.3.3 Thermal Properties 1606.3.3.1 Thermogravimetric Analysis 1606.3.3.2 Differential Scanning Calorimetry 1626.3.4 Surface Morphology 1626.3.5 Electrical Properties 1636.4 Applications of PLA Hybrid Green Composites 1646.5 Conclusions 164References 1647 Lignin/Nanolignin and their Biodegradable Composites 167Anupama Rangan, M.V. Manjula, K.G. Satyanarayana, and Reghu Menon7.1 Introduction 1687.1.1 Renewable Bioresources-Sustainability and Biodegradability Issues 1687.1.2 Nanotechnology and Application of Nanotechnology (Specifically for Cellulose and Lignin) 1707.2 Lignin 1707.2.1 Structure, Chemical Nature, Complexity, and Linkage Heterogeneity 1707.2.2 Types, Structure, Properties, and Uses of Modified/Processed Lignin 1727.2.2.1 Kraft Lignin 1737.2.2.2 Soda Lignin 1737.2.2.3 Lignosulfonates 1737.2.2.4 Organosolv Lignin 1757.2.2.5 Hydrolysis Lignin 1757.3 Nanolignin and Methods of Preparation of Nanolignin 1757.3.1 Precipitation Method 1757.3.2 Chemical Modification Method 1787.3.3 Electrospinning Followed by Surface Modification 1787.3.4 Freeze Drying Followed by Thermal Stabilization and Carbonization 1797.3.5 Supercritical Antisolvent Technology 1797.3.6 Chemomechanical Methods 1807.3.7 Nanolignin by Self‐Assembly 1817.3.8 Template‐Mediated Synthesis of Lignin‐based Nanotubes and Nanowires 1817.4 Characterization of Lignin Nanoparticles 1837.4.1 Microscopy 1837.4.2 Thermal Analysis 1857.4.3 X‐Ray Diffraction 1867.4.4 Other Methods 1867.5 Lignin Composites/Nanolignin‐Based “Green” Composites 1867.5.1 Lignin‐based Thermoplastic Polymer Composites 1867.5.2 Rubber‐based Lignin Composites 1877.5.3 Lignin‐reinforced Biodegradable Composites 1877.5.4 Lignin‐reinforced Foam‐based Composites 1887.5.5 Lignin‐based Composite Coatings 1887.5.6 Synthesis of Lignin–PLA Copolymer Composites 1907.5.7 Nanolignin‐based “Green” Composites 1907.6 Potential Applications of Lignin/Nanolignin 1907.7 Perspectives and Concluding Remarks 191Acknowledgments 192References 192Web Site References 1988 Starch‐Based “Green” Composites 199K.G. Satyanarayana and V.S. Prasad8.1 Introduction 2008.1.1 Starch 2008.1.1.1 Thermoplastic Starch 2028.1.1.2 Starch Nanocrystals 2038.1.1.3 Structure and Properties of Starch/TPS 2078.2 Starch‐Based Composites 2158.2.1 Processing Techniques/Methods 2158.2.1.1 Processing of Starch‐based Microcomposites 2158.2.1.2 Processing of Starch‐based Nanocomposites 2208.2.2 Structure and Properties of Starch-Polymer Systems (Blends/Composites) 2228.2.2.1 Starch-Polymer Systems 2228.2.2.2 Starch–Natural Materials‐based “Green” Composites 2398.2.2.3 Starch‐based Nanocomposites 2578.2.2.4 Starch Nanoparticles in Composites 2698.3 Applications 2728.4 Perspectives 2758.5 Concluding Remarks 275Acknowledgments 276References 2779 Green Composite Materials Based on Biodegradable Polyesters 299Pramendra Kumar Bajpai9.1 Introduction 2999.2 Fabrication Techniques for Green Composites 3019.2.1 Hand Lay‐Up Fabrication Technique 3019.2.2 Compression Molding 3029.2.3 Injection Molding Fabrication Technique 3049.2.4 Resin Transfer Fabrication Technique 3069.2.5 Pultrusion Fabrication Technique 3079.3 Processing of Green Composites Through Microwave Heating 3089.4 Application of Green Composite 3089.5 Concluding Remark 309References 30910 Applications of Green Composite Materials 312Koronis Georgios, Arlindo Silva, and Samuel Furtado10.1 Introduction 31310.2 Green Composite Materials 31310.2.1 Reinforcement 31410.2.2 The Matrix 31610.3 Consumer Products 31710.4 Biomedical Applications 31910.5 Packaging 32110.6 Transportation Industry 32210.7 Construction 32610.8 Energy Industry 32710.9 Sports and Leisure Industry 32710.9.1 Boat Hulls and Canoes 32810.9.2 Snowboards/Skis and Surfboards 32810.9.3 Toys 32910.9.4 Musical Instruments 32910.10 Conclusions 330References 330Index 338
Du kanske också är intresserad av
Conjugated Polymers for Next-Generation Applications, Volume 2
Vijay Kumar, Kashma Sharma, Rakesh Sehgal, Susheel Kalia, India) Kumar, Vijay (Assistant Professor, Department of Physics, National Institute of Technology Srinagar, Jammu and Kashmir, India) Sharma, Kashma (Assistant Professor, Department of Chemistry, DAV College, Sector-10, Chandigarh, India) Sehgal, Rakesh (Director and Professor, Department of Mechanical Engineering, National Institute of Technology Srinagar, Jammu and Kashmir, India) Kalia, Susheel (Associate Professor and Head, Department of Chemistry, Army Cadet College Wing of Indian Military Academy Dehradun
3 129 kr