Bioceramic Coatings for Medical Implants
Trends and Techniques
Inbunden, Engelska, 2015
Av Robert B. Heimann, Hans D. Lehmann, Freiber) Heimann, Robert B. (Institut fur Mineralogie, Geochemie und Lagerstattenkunde
2 179 kr
Produktinformation
- Utgivningsdatum2015-04-08
- Mått175 x 252 x 31 mm
- Vikt1 220 g
- FormatInbunden
- SpråkEngelska
- Antal sidor496
- FörlagWiley-VCH Verlag GmbH
- ISBN9783527337439
Tillhör följande kategorier
Robert B. Heimann is Professor (em.) of Applied Mineralogy and Materials Science, formerly at Technische Universität Bergakademie Freiberg, Germany. He received his scientific degrees from Freie Universität (FU) Berlin, Germany, and served as a research fellow at FU Berlin and the Karlsruhe Institute of Technology. In 1979, he moved to Canada and worked as a research associate at the McMaster University, was visiting professor at the University of Toronto, and held various positions as senior researcher and manager in industry and government institutions. In 1993, he became Full Professor in Freiberg. Until his retirement in 2004, Professor Heimann has authored over 280 scientific publications including several books, was board member and chair of several scientific committees, and vice president and then president of the International Council for Applied Mineralogy (ICAM). In 2001, he was honored with the Georg-Agricola-Medal of the German Mineralogical Society (DMG).Hans D. Lehmann is an organic chemist with an extensive working experience in polymer chemistry and polymer processing technology. He received his Diploma in chemistry from the Martin Luther University Halle-Wittenberg, Germany, in 1962. He worked as a polymer chemist and team leader in production-related research at the chemical company VEB BUNA (now Dow Chemical and Styron Deutschland, respectively). He specialized in the development of polymerization catalysts, modeling of monomer and polymer syntheses as well as their processing technologies and analytics. Moreover, until Germany?s reunification Hans Dieter Lehmann was responsible for the coordination between academia, industry and government. Since 1994 he worked as a consultant for patent law and process concepts, and co-authored several patents related to structural and functional surface coatings
- Preface XIGlossary XVII1 Bioceramics – A Historical Perspective 11.1 Alumina 11.2 Zirconia 31.3 Calcium Phosphates 4References 62 Socio-Economic Aspects and Scope of Bioceramic Materials and Biomedical Implants 112.1 Types of Biomaterial 112.2 The Growing Global and Regional Markets for Biomedical Implants 142.2.1 A Worldwide Need for Implants 142.2.2 Market Projections and Forecasts for Biomaterials and Biomedical Implants 172.2.2.1 Biomaterials 172.2.2.2 Large-Joint Reconstructive Implants (Hip and Knee) 192.2.2.3 Small Joints and Extremities Implants 202.2.2.4 Spinal Implants 212.2.2.5 Dental Implants 212.3 Role of Bioceramic Coatings in Arthroplasty 222.4 Ceramic Femoral Ball Heads 262.4.1 Mechanical and Functional Properties 262.4.2 Manufacturing of Ceramic Femoral Ball Heads 272.4.3 Discolouration of Zirconia by Ionising Radiation 30References 353 Fundamentals of Interaction of Bioceramics and Living Matter 413.1 Principle of Biocompatibility 413.2 Hierarchical Structure of Bone and Teeth 443.2.1 Bone Structure 443.2.2 Tooth Structure 473.3 Bioceramic/Bone Interface 493.3.1 Elasticity Mismatch 493.3.2 Interfacial Loosening 503.4 Basic Aspects of Biomineralisation 523.5 Interaction at a Cellular Level 533.6 Interaction at a Tissue Level 553.7 Advantages of Hydroxyapatite and Bioglass Coatings 603.8 The Promise of Cytokines 62References 644 Structure and Properties of Bioceramics Used in Orthopaedic and Dental Implants 694.1 Bioinert Ceramics 694.1.1 Alumina 694.1.2 Stabilised Zirconia 744.1.2.1 Transformation Toughening of Zirconia Ceramics 754.1.2.2 Mechanical Properties of Zirconia 814.1.2.3 Biocompatibility and Hydrolytic Stability of Zirconia 814.2 Bioactive Ceramics 834.2.1 Surface-Active Bioglasses 844.2.2 Hydroxyapatite 894.2.3 Transition Metal-Substituted Calcium Orthophosphates 954.2.4 Resorbable Calcium Orthophosphates 984.2.4.1 Tricalcium Phosphates 994.2.4.2 Tetracalcium Phosphate 1024.2.4.3 Ca–PO4 Sheet Structures 1034.2.4.4 Highly Soluble Alkali-Containing Calcium Orthophosphates 1034.2.4.5 Other Resorbable Bioceramics 104References 1055 Technology of Coating Deposition 1135.1 Overview 1135.2 Non-Thermal Deposition Methods 1155.2.1 Biomimetic Route 1155.2.1.1 General Aspects 1155.2.1.2 Chemistry of Biomimetic Precipitation 1175.2.1.3 Biomimetic Calcium Phosphate Coatings Deposited on Various Substrates 1235.2.2 Sol–Gel Deposition 1325.2.2.1 Titania Films and Coatings 1335.2.2.2 Hydroxyapatite 1355.2.2.3 Other Types of Coating 1415.2.3 Dip and Spin Coating 1435.2.3.1 Dip Coating 1435.2.3.2 Spin Coating 1455.2.4 Electrochemical Deposition (ECD) 1465.2.4.1 Electrochemical Reactions 1475.2.4.2 Acid–Base Reactions 1475.2.4.3 Precipitation Reactions 1485.2.5 Electrophoretic Deposition (EPD) 1525.2.5.1 General Aspects 1525.2.5.2 Electrophoretic Deposition of Calcium Phosphate Coatings 1545.2.6 Thermal Substrate Deposition (Hydroprocessing) 1585.2.7 Hydrothermal Coating Deposition 1625.2.8 Electron- and Ion Beam-Assisted Deposition (EBAD, IBAD) 1635.2.9 Radio Frequency (r.f.) Magnetron Sputtering 1675.3 Thermal Deposition Methods 1725.3.1 Atmospheric Plasma Spraying (APS) 1735.3.1.1 The Physics Behind the Process 1735.3.1.2 Micro-Plasma Spraying (MPS) and Low Energy Plasma Spraying (LEPS) 1795.3.2 Low-Pressure (Vacuum) Plasma Spraying (LPPS, VPS) 1825.3.3 Suspension Plasma Spraying (SPS) 1855.3.3.1 Hydroxyapatite Coatings 1885.3.3.2 Titanium Oxide Coatings 1905.3.3.3 Bioglass Coatings 1915.3.3.4 Other Types of Coating 1925.3.4 High Velocity Suspension Flame Spraying (HVSFS) 1935.3.4.1 Hydroxyapatite Coatings 1945.3.4.2 Titanium Oxide Coatings 1965.3.4.3 Bioglass Coatings 1975.3.4.4 Other Coatings 1995.3.5 Solution Precursor Plasma Spraying (SPPS) 2005.3.6 Cold Gas Dynamic Spraying (CGDS) 2015.3.6.1 Fundamentals 2015.3.6.2 Bioceramic Coatings 2045.3.7 Plasma Electrolytic Oxidation (PEO) 2095.3.7.1 Magnesium Substrates 2125.3.7.2 Titanium Substrates 2145.3.8 Pulsed Laser Deposition (PLD) 2195.4 Other Techniques 2225.4.1 Flame Spraying 2225.4.1.1 Oxygen/Acetylene Flame Spraying 2225.4.1.2 High Velocity Oxyfuel Spraying (HVOF) 2225.4.2 Inductively Coupled Plasma Spraying (ICPS) 2245.4.3 Chemical Vapour Deposition (CVD) 2245.4.4 Laser Alloying 2265.4.5 Phase Inversion Technique 226References 2276 Deposition, Structure, Properties and Biological Function of Plasma-Sprayed Bioceramic Coatings 2536.1 General Requirements and Performance Profile of Plasma-Sprayed Bioceramic Coatings 2536.2 Structure and Biomedical Functions of Bioceramic Coatings 2586.2.1 Hydroxyapatite Coatings 2586.2.1.1 Microstructural and Compositional Changes During Plasma Spraying and Incubation in SBF 2586.2.1.2 Thermal Decomposition of Hydroxyapatite During Plasma Spraying 2636.2.1.3 Parametric Study of Thermal Decomposition of Hydroxyapatite 2696.2.1.4 The Oxyapatite Problem 2726.2.1.5 Biological Responses to Hydroxyapatite Coatings 2756.2.2 Composite Coatings 2786.2.2.1 Hydroxyapatite/Titania Composite Coatings 2786.2.2.2 Hydroxyapatite/Zirconia Composite Coatings 2786.2.2.3 Hydroxyapatite/Alumina/Carbon Nanotube Composite Coatings 2806.2.3 Biphasic Hydroxyapatite/Tricalcium Phosphate Coatings 2806.2.4 Transition Metal-Substituted Calcium Orthophosphate Coatings 2816.2.4.1 Coating Thickness 2816.2.4.2 Coating Porosity 2826.2.4.3 Tensile Adhesion and Shear Strengths 2836.3 The Role of Bond Coats 2836.3.1 Engineering the Substrate–Coating Interface 2836.3.2 Selected Bond Coats 2856.3.2.1 Calcium Silicate Bond Coats 2856.3.2.2 Titania Bond Coats 2886.3.2.3 Zirconia Bond Coats 2926.3.2.4 Mixed Zirconia/Titania Bond Coats 294References 2987 Characterisation and Testing of Bioceramic Coatings 3097.1 Phase Composition: X-ray Diffraction 3107.1.1 Fundamentals 3107.1.2 X-ray Diffraction of Plasma-Sprayed Hydroxyapatite Coatings 3127.2 Phase Composition: Vibrational (Infrared and Raman) Spectroscopy 3147.2.1 Fundamentals 3147.2.1.1 Infrared Spectroscopy 3147.2.1.2 Raman Spectroscopy 3157.2.2 Raman Microscopy of Bioceramic and Photoactive Titania Coatings 3167.2.3 Infrared and Raman Spectra of Hydroxyapatite Coatings 3187.2.3.1 Fourier Transform Infrared (FTIR) Spectroscopy 3187.2.3.2 Raman spectroscopy 3217.3 Phase Composition: Nuclear Magnetic Resonance Spectroscopy 3257.3.1 Fundamentals 3257.3.2 NMR Spectra of Hydroxyapatite Coatings 3267.4 Phase Composition: Cathodoluminescence 3337.4.1 Fundamentals 3337.4.2 Cathodoluminescence Microscopy of Plasma-Sprayed Hydroxyapatite Coatings 3347.5 Adhesion of Coatings to the Substrate 3407.5.1 Fundamentals 3407.5.1.1 Tensile Pull Test 3427.5.1.2 Modified Peel Test 3437.5.1.3 Scratch Testing 3467.5.1.4 Ultrasonic Testing 3497.5.2 Adhesion of Plasma-Sprayed Hydroxyapatite Coatings 3517.5.2.1 Modified Peel Test According to ASTM D3167-10 3517.5.2.2 Tensile Test 3537.5.2.3 Scratch Test 3547.5.2.4 Laser Shock Adhesion Test (LASAT) 3567.6 Residual Coating Stresses 3587.6.1 Fundamentals 3587.6.2 X-ray Diffraction Measurements (sin2Ψ-Technique) 3617.6.3 Stress Determination by Curvature Measurement (Almen-Type Test) 3637.6.4 Hole-Drilling Strain Gauge Method 3657.6.5 Photoluminescence Piezospectroscopy 3677.6.6 Residual Stresses in Plasma-Sprayed Hydroxyapatite Coatings 3707.6.6.1 Stress Analysis by X-ray Diffraction 3707.6.6.2 Stress Analysis by Curvature Measurement 3747.6.6.3 Stress Analysis by the Hole-Drilling Strain Gauge Method 3767.6.6.4 Stress Analysis by Raman Piezospectroscopy 3777.7 Fundamentals of Roughness and Porosity 3777.8 Microhardness 3827.8.1 Fundamentals 3827.8.2 Microhardness of Hydroxyapatite Coatings 3867.9 Potentiodynamic Polarisation and Electrochemical Impedance Spectroscopy (EIS) 3877.9.1 Fundamentals 3877.9.2 Corrosion Protection of Metal Implants through Coatings 3897.10 Biological Performance Testing of Bioceramic Coatings 3927.10.1 Composition of Simulated Body Fluids 3937.10.2 Interaction of Simulated Body Fluids and Coatings 3947.10.2.1 Structure and Transformation of Amorphous Calcium Phosphate (ACP) 3957.10.2.2 EELS and PIXE Studies 4027.10.3 Cell Proliferation and Viability Tests 4057.10.3.1 Alkaline Phosphatase (ALP) Activity 4057.10.3.2 Expression of Non-collagenous Proteins 4067.10.3.3 AlamarBlue® and MTT Assays 4097.10.3.4 Fluorescence Staining 4117.10.4 In vivo Testing of Bioceramic Coatings Using Animal Models 4147.10.4.1 Rat Model 4167.10.4.2 Rabbit Model 4177.10.4.3 Dog Model 4207.10.4.4 Sheep Model 4237.10.4.5 Other Animal Models 429References 4298 Future Developments and Outlook 445References 451Appendix: Relevant Scientific Journals/Book Series with Bioceramic Content 455Index 459
“Authored by two renowned experts with over 30 years experience in industry and academia, this book provides in-depth information on the preparation, chemistry, and engineering of bioceramic coatings for medical implants for beginners and professionals.” (Materials and Corrosion, 1 October 2014)
Mer från samma författare
Highlights in Applied Mineralogy
Soraya Heuss-Aßbichler, Georg Amthauer, Melanie John, Soraya Akhavan Heuss-Aßbichler Behnam, Reto Giere, Hermann Gies, Erika Griesshaber, René Gunder, Robert B. Heimann, Antje Hirsch, Markus Hoelzel, Karyn Jarvis, Christian M. Julien, Peter M. Kadletz, Katharina Klang, Klemens Kelm, Christoph Lauer, Leonhard Leppin, Gregory R. Lumpkin, Bernd Marler, Julien Marquardt, Alain Mauger, Peter Majewski, Stefan Neumeier, Klaus G. Nickel, Luca A. Pardi, Lars Peters, Herbert Pöllmann, Daniel Rettenwander, Georg Roth, Maurizio Romanelli, Marthe Rousseau, Tsutomu Sato, Korbinian Schiebel, Akhavan Behnam, Hartmut Schlenz, Wolfgang Schmahl, Katherine L. Smith, Susan Schorr, Stefan Stöber, Reinhard Wagner, Xiaofei Yin, Andreas Ziegler, Gerald Buck, Fabio Capacci, Antonio Checa, Francesco Di Benedetto, Anton Eisenhauer
3 119 kr
Du kanske också är intresserad av
Highlights in Applied Mineralogy
Soraya Heuss-Aßbichler, Georg Amthauer, Melanie John, Soraya Akhavan Heuss-Aßbichler Behnam, Reto Giere, Hermann Gies, Erika Griesshaber, René Gunder, Robert B. Heimann, Antje Hirsch, Markus Hoelzel, Karyn Jarvis, Christian M. Julien, Peter M. Kadletz, Katharina Klang, Klemens Kelm, Christoph Lauer, Leonhard Leppin, Gregory R. Lumpkin, Bernd Marler, Julien Marquardt, Alain Mauger, Peter Majewski, Stefan Neumeier, Klaus G. Nickel, Luca A. Pardi, Lars Peters, Herbert Pöllmann, Daniel Rettenwander, Georg Roth, Maurizio Romanelli, Marthe Rousseau, Tsutomu Sato, Korbinian Schiebel, Akhavan Behnam, Hartmut Schlenz, Wolfgang Schmahl, Katherine L. Smith, Susan Schorr, Stefan Stöber, Reinhard Wagner, Xiaofei Yin, Andreas Ziegler, Gerald Buck, Fabio Capacci, Antonio Checa, Francesco Di Benedetto, Anton Eisenhauer
3 119 kr