Bio-Ceramics with Clinical Applications
Inbunden, Engelska, 2014
1 639 kr
Produktinformation
- Utgivningsdatum2014-05-16
- Mått178 x 252 x 29 mm
- Vikt934 g
- FormatInbunden
- SpråkEngelska
- Antal sidor488
- FörlagJohn Wiley & Sons Inc
- ISBN9781118406755
Tillhör följande kategorier
Maria Vallet-Regi is full Professor of Inorganic Chemistry and Head of the Department of Inorganic and Bioinorganic Chemistry of the Faculty of Pharmacy at Universidad Complutense de Madrid, Spain. Professor Vallet-Regí has written over 500 articles and more than 20 books. She is the most cited Spanish scientist in the field of Materials Science in this last decade, according to ISI Web of Knowledge. She has presented her research around the world at over 300 international conferences Professor Vallet-Regí has received many awards including: the French-Spanish award of the year 2000 from the Societé Française de Chimie; the Inorganic Chemistry award 2008 from the Spanish Royal Society of Chemistry; the 2008 Spanish National Research Award "Leonardo Torres Quevedo" in the field of Engineering and Spanish Royal Society of Chemistry (RSEQ) research award 2011 (RSEQ medal).
- List of Contributors xiii Preface xvPart I Introduction 11. Bioceramics 3María Vallet-Regí1.1 Introduction 31.2 Reactivity of the Bioceramics 41.3 First, Second, and Third Generations of Bioceramics 61.4 Multidisciplinary Field 71.5 Solutions for Bone Repairing 81.6 Biomedical Engineering 13Recommended Reading 152. Biomimetics 17María Vallet-Regí2.1 Biomimetics 172.2 Formation of Hard Tissues 182.3 Biominerals versus Biomaterials 19Recommended Reading 22Part II Materials 233. Calcium Phosphate Bioceramics 25Daniel Arcos3.1 History of Calcium Phosphate Biomaterials 253.2 Generalities of Calcium Phosphates 263.3 In vivo Response of Calcium Phosphate Bioceramics 283.4 Calcium Hydroxyapatite-Based Bioceramics 303.4.1 Stoichiometric Hydroxyapatite (HA) 313.4.2 Calcium Deficient Hydroxyapatites (CDHA) 373.4.3 Carbonated Hydroxyapatites (CHA) 393.4.4 Silicon-Substituted Hydroxyapatite (Si-HA) 403.4.5 Hydroxyapatites of Natural Origin 453.5 Tricalcium Phosphate-Based Bioceramics 503.5.1 -Tricalcium Phosphate (-TCP) 503.5.2 -Tricalcium Phosphate (-TCP) 533.6 Biphasic Calcium Phosphates (BCP) 553.6.1 Chemical and Structural Properties 553.6.2 Preparation Methods 563.6.3 Clinical Applications 563.7 Calcium Phosphate Nanoparticles 573.7.1 General Properties and Scope of Calcium Phosphate Nanoparticles 573.7.2 Preparation Methods of CaP Nanoparticles 583.7.3 Clinical Applications 603.8 Calcium Phosphate Advanced Biomaterials 603.8.1 Scaffolds for in situ Bone Regeneration and Tissue Engineering 603.8.2 Drug Delivery Systems 62References 654. Silica-based Ceramics: Glasses 73Antonio J. Salinas4.1 Introduction 734.1.1 What Is a Glass? 734.1.2 Properties of Glasses 754.1.3 Structure of Glasses 754.1.4 Synthesis of Glasses 764.2 Glasses as Biomaterials 784.2.1 First Bioactive Glasses (BGs): Melt-Prepared Glasses (MPGs) 794.2.2 Other Bioactive MPGs 804.2.3 Bioactivity Index and Network Connectivity 804.2.4 Mechanism of Bioactivity 814.3 Increasing the Bioactivity of Glasses: New Methods of Synthesis 824.3.1 Sol–Gel Glasses (SGGs) 824.3.2 Composition, Texture, and Bioactivity of SSGs 844.3.3 Biocompatibility of SGGs 864.3.4 SGGs as Bioactivity Accelerators in Biphasic Materials 864.3.5 Template Glasses (TGs) Bioactive Glasses with Ordered Mesoporosity 884.3.6 Atomic Length Scale in BGs: How the Local Structure Affects Bioactivity 914.3.7 New Reformulation of Hench’s Mechanism for TGs 934.3.8 Including Therapeutic Inorganic Ions in the Glass Composition 944.4 Strengthening and Adding New Capabilities to Bioactive Glasses 954.4.1 Glass Ceramics (GCs) 954.4.2 Composites Containing Bioactive Glasses 974.4.3 Sol–Gel Organic–Inorganic Hybrids (O-IHs) 984.5 Non-silicate Glasses 994.5.1 Phosphate Glasses 994.5.2 Borate Glasses 1004.6 Clinical Applications of Glasses 1014.6.1 Bioactive Silica Glasses 1014.6.2 Inert Silica Glasses 1064.6.3 Phosphate Glasses 1064.6.4 Borate Glasses 107Recommended Reading 1075. Silica-based Ceramics: Mesoporous Silica 109Montserrat Colilla5.1 Introduction 1095.2 Discovery of Ordered Mesoporous Silicas 1105.3 Synthesis of Ordered Mesoporous Silicas 1115.3.1 Hydrothermal Synthesis 1125.3.2 Evaporation-Induced Self-Assembly (EISA) Method 1195.4 Mechanisms of Mesostructure Formation 1195.5 Tuning the Structural Properties of Mesoporous Silicas 1225.5.1 Micellar Mesostructure 1235.5.2 Type of Mesoporous Structure 1285.5.3 Mesopore Size 1315.6 Structural Characterization of Mesoporous Silicas 1325.7 Synthesis of Spherical Mesoporous Silica Nanoparticles 1355.7.1 Aerosol-Assisted Synthesis 1365.7.2 Modified Stöber Method 1375.8 Organic Functionalization of Ordered Mesoporous Silicas 1385.8.1 Post-synthesis Functionalization (“Grafting”) 1395.8.2 Co-condensation (“One-Pot” Synthesis) 1405.8.3 Periodic Mesoporous Organosilicas 141References 1416. Alumina, Zirconia, and Other Non-oxide Inert Bioceramics 153Juan Peña López6.1 A Perspective on the Clinical Application of Alumina and Zirconia 1536.1.1 Alumina 1556.1.2 Zirconia 1586.2 Novel Strategies Based on Alumina and Zirconia Ceramics 1606.2.1 From Alumina Toughened Zirconia to Alumina Matrix Composite 1606.2.2 Introduction of Different Species in Zirconia 1616.2.3 Improvement of Surface Adhesion 1626.3 Non-oxidized Ceramics 1636.3.1 Silicon Nitride (Si3N4) 1636.3.2 Silicon Carbide (SiC) 164References 1647. Carbon-based Materials in Biomedicine 175Mercedes Vila7.1 Introduction 1757.2 Carbon Allotropes 1757.2.1 Pyrolytic Carbon 1767.2.2 Carbon Fibers 1777.2.3 Fullerenes 1777.2.4 Carbon Nanotubes 1797.2.5 Graphene 1817.2.6 Diamond and Amorphous Carbon 1847.3 Carbon Compounds 1867.3.1 Silicon Carbide 1867.3.2 Boron Carbide 1877.3.3 Tungsten Carbide 188References 188Part III Material Shaping 1938. Cements 195Oscar Castaño and Josep A. PlanellAbbreviations 195Glossary 1968.1 Introduction 1978.1.1 Brief History 1978.1.2 Definition and Chemistry 1998.1.3 Description of the Different CaP Cements 2008.1.4 State of the Art 2018.2 Calcium Phosphate Cements 2068.2.1 Types 2068.2.2 Mechanisms 2068.2.3 Relevant Experimental Variables 2078.2.4 Material Characterization 2118.2.5 Reaction Evolution of Cements 2208.2.6 Additives and Strategies to Enhance Properties 2228.2.7 Biological Characterization and Bioactive Behavior 2248.3 Applications 2298.3.1 Bone Defect Repair 2298.3.2 Drug Delivery Systems 2328.4 Future Trends 2328.5 Conclusions 233References 2349. Bioceramic Coatings for Medical Implants 249M. Victoria Cabañas9.1 Introduction 2499.2 Methods to Modify the Surface of an Implant 2509.2.1 Deposited Coatings 2519.2.2 Conversion Coatings 2579.3 Bioactive Ceramic Coatings 2589.3.1 Clinical Applications 2599.3.2 Calcium Phosphates-Based Coatings 2609.3.3 Silica-based Coatings: Glass and Glass-Ceramics 2689.3.4 Bioactive Ceramic Layer Formation on a Metallic Substrate 2709.4 Bioinert Ceramic Coatings 2729.4.1 Titanium Nitride and Zirconia Coatings 2739.4.2 Carbon-based Coatings 275References 27910. Scaffold Designing 291Isabel Izquierdo-Barba10.1 Introduction 29110.2 Essential Requirements for Bone Tissue Engineering Scaffolds 29310.3 Scaffold Processing Techniques 29610.3.1 Foam Scaffolds 29710.3.2 Rapid Prototyping Scaffolds 30110.3.3 Electrospinning Scaffolds 305References 307Part IV Research on Future Ceramics 31511. Bone Biology and Regeneration 317Soledad Pérez-Amodio and Elisabeth Engel11.1 Introduction 31711.2 The Skeleton 31811.3 Bone Remodeling 32011.4 Bone Cells 32211.4.1 Bone Lining Cells 32211.4.2 Osteoblasts 32311.4.3 Osteocytes 32311.4.4 Osteoclasts 32411.5 Bone Extracellular Matrix 32711.6 Bone Diseases 32711.6.1 Osteoporosis 32811.6.2 Paget’s Disease 32911.6.3 Osteomalacia 32911.6.4 Osteogenesis Imperfecta 32911.7 Bone Mechanics 32911.8 Bone Tissue Regeneration 33311.8.1 Calcium Phosphate and Silica-based Bioceramics 33311.8.2 Bioactive Glasses 33411.8.3 Calcium Phosphate Cements 33511.9 Conclusions 336References 33612. Ceramics for Drug Delivery 343Miguel Manzano12.1 Introduction 34312.2 Drug Delivery 34412.3 Drug Delivery from Calcium Phosphates 34612.3.1 Drug Delivery from Hydroxyapatite 34612.3.2 Drug Delivery from Tricalcium Phosphates 34812.3.3 Drug Delivery from Calcium Phosphate Cements 34812.4 Drug Delivery from Silica-based Ceramics 35112.4.1 Drug Delivery from Glasses 35112.4.2 Drug Delivery from Mesoporous Silica 35512.5 Drug Delivery from Carbon Nanotubes 36312.6 Drug Delivery from Ceramic Coatings 365References 36613. Ceramics for Gene Transfection 383Blanca González13.1 Gene Transfection 38313.2 Gene Transfection Based on Nonviral Vectors 38613.3 Ceramic Nanoparticles for Gene Transfection 38813.3.1 Calcium Phosphate Nanoparticles 39113.3.2 Mesoporous Silica Nanoparticles 39313.3.3 Carbon Allotropes (Fullerenes, CNTs, Graphene Oxide) 39713.3.4 Magnetic Iron Oxide Nanoparticles 403References 41014. Ceramic Nanoparticles for Cancer Treatment 421Alejandro Baeza14.1 Delivery of Nanocarriers to Solid Tumors 42114.1.1 Special Issues of Tumor Vasculature: Enhanced Permeation and Retention Effect (EPR) 42214.1.2 Tumor Microenvironment 42314.2 Ceramic Nanoparticle Pharmacokinetics in Cancer Treatment 42414.2.1 Biodistribution and Excretion/Clearance Pathways 42414.2.2 Toxicity of the Ceramic Nanoparticles 42614.3 Cancer-targeted Therapy 42814.3.1 Endocytic Mechanism of Targeted Drug Delivery 42814.3.2 Specific Tumor Active Targeting 43014.3.3 Angiogenesis-associated Active Targeting 43214.4 Ceramic Nanoparticles for Cancer Treatment 43414.4.1 Mesoporous Silica Nanoparticles 43414.4.2 Calcium Phosphates Nanoparticles 44014.4.3 Carbon Allotropes 44014.4.4 Iron Oxide Nanoparticles and Hyperthermia 44214.5 Imaging and Theranostic Applications 443References 446Index 457