Bayesian Statistical Methods

Häftad, Engelska, 2021

Av Brian J. Reich, Sujit K. Ghosh, Brian J. (N.C. State University) Reich

779 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Finns i fler format (1)


Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures.In addition to the basic concepts of Bayesian inferential methods, the book covers many general topics:Advice on selecting prior distributionsComputational methods including Markov chain Monte Carlo (MCMC)Model-comparison and goodness-of-fit measures, including sensitivity to priors Frequentist properties of Bayesian methodsCase studies covering advanced topics illustrate the flexibility of the Bayesian approach:Semiparametric regressionHandling of missing data using predictive distributionsPriors for high-dimensional regression modelsComputational techniques for large datasetsSpatial data analysisThe advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets, and complete data analyses are available on the book’s website.

Produktinformation

  • Utgivningsdatum2021-06-30
  • Mått156 x 234 x 16 mm
  • Vikt530 g
  • FormatHäftad
  • SpråkEngelska
  • SerieChapman & Hall/CRC Texts in Statistical Science
  • Antal sidor288
  • FörlagTaylor & Francis Ltd
  • ISBN9781032093185