3 929 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Written for use in a first introductory one-semester course in reservoir engineering, this book introduces the underlying goals of reservoir engineering and presents a clear roadmap for analysing reservoirs themselves.
Produktinformation
- Utgivningsdatum2013-09-19
- Mått203 x 254 x 18 mm
- FormatHäftad
- SpråkEngelska
- Antal sidor340
- FörlagKendall/Hunt Publishing Co ,U.S.
- ISBN9781465236845
Tillhör följande kategorier
- PREFACECHAPTER 1 INTRODUCTION1.1 FORCES THAT MOVE FLUIDS IN RESERVOIRS1.2 PRODUCTION STRATEGIES1.3 PROBLEM STATEMENT1.4 TYPES OF RESERVOIRS1.5 ROADMAP1.5 PRACTICE PROBLEMS1.6 REFERENCESCHAPTER 2 FUNDAMENTAL RESERVOIR CONCEPTS2.1 PORE VOLUME2.2 POROSITY2.2.1 Effect of Compaction on Porosity2.3 SPECIFIC SURFACE2.4 WATER SATURATION2.5 OIL SATURATION2.6 GAS SATURATION2.7 CONVERSION OF SATURATIONS TO MASS2.8 PERMEABILITY AND DARCY'S LAW2.8.1 Measurement of Permeability2.8.2 Klinkenberg Effect2.8.3 Extensions of Darcy's Law: Brinkman's Equation2.8.4 Extensions of Darcy's Law: Forchheimer's Equation2.8.5 Vertical and Horizontal Permeability2.9 POROSITY - PERMEABILITY RELATIONSHIP2.10 WETTABILITY2.11 RELATIVE PERMEABILITY2.11.1 Relative Permeability Ratio2.11.2 Fractional Flow to Water (Watercut)2.11.3 Maximum Recoverable Oil2.11.4 Mobility Ratio2.11.5 Corey's Equations2.11.6 Empirical Estimates for Relative Permeability Curves2.11.7 Three-Phase Relative Permeability2.11.8 Stone's Models for Three-Phase Relative Permeability2.11.9 Baker's Model for Three-Phase Relative Permeability2.12 CAPILLARY PRESSURE2.12.1 Leverett J Function2.13 HYSTERESIS OF RELATIVE PERMEABILITY AND CAPILLARY PRESSURE2.14 ROCK COMPRESSIBILITY2.15 BASIC RESISTIVITY THEORY2.15.1 Formation Resistivity Factor and Porosity2.15.2 Water Saturation2.16 AVERAGE PROPERTIES2.17 REFERENCES2.18 PRACTICE PROBLEMSCHAPTER 3 PRESSURE-VOLUME-TEMPERATURE (PVT) BEHAVIOUR3.1 GAS BEHAVIOUR3.1.1 Real Gas Behaviour3.1.3 Equations of State3.2 LIQUIDS3.3 SINGLE-COMPONENT PRESSURE-TEMPERATURE (P-T) PHASE DIAGRAM3.3.1 Pressure and Temperature versus Specific Volume3.4 TWO-COMPONENT P-T PHASE DIAGRAM3.5 MULTIPLE-COMPONENT P-T PHASE DIAGRAM3.6 EFFECT OF COMPOSITION3.7 RETROGRADE BEHAVIOUR3.8 GAS FIELD DEPLETION3.9 PRODUCTION OF GAS FROM RESERVOIR TO SURFACE3.10 PRODUCTION OF OIL FROM RESERVOIR TO SURFACE3.11 PRODUCTION OF GAS-CONDENSATE FROM RESERVOIR TO SURFACE3.12 PRODUCTION OF RETROGRADE CONDENSATE FROM RESERVOIR TO SURFACE3.13 SOLUTION GAS-TO-OIL RATIO AND FORMATION VOLUME FACTORS3.13.1 Oil Formation Volume Factor3.13.2 Gas Formation Volume Factor3.14 FLASH AND DIFFERENTIAL LIBERATION TESTS3.14.1 Flash Expansion3.14.2 Differential Liberation3.15 CALCULATION OF VAPOUR-LIQUID EQUILIBRIUM3.15.1 Raoult's Law3.15.2 Henry's Law3.15.3 Simpler Correlations3.15.4 Flash (Phase Split) Calculations3.16 REFERENCES3.17 PRACTICE PROBLEMSCHAPTER 4 MAPPING, RESERVES, AND VOLUMETRICS4.1 MAPPING4.1.1 Gross Pay Map4.1.2 Net Pay Map4.1.3 Porosity-Pay Map4.1.4 Permeability-Pay Map4.1.5 Porosity-Oil Saturation-Pay Map4.1.6 Isobaric Map4.1.7 Isopach Maps4.1.8 Isolith Maps4.1.9 Bubble Map4.1.10 Structure Map4.1.11 Topographic Map4.1.12 Cross-sections4.1.13 Net-to-Gross Ratio Maps4.2 RESERVES4.3 VOLUMETRICS4.4 REFERENCES4.5 PRACTICE PROBLEMSCHAPTER 5 DECLINE ANALYSIS5.1 ARPS' DECLINE MODEL5.1.1 Exponential Decline5.1.2 Hyperbolic Decline5.1.3 Harmonic Decline5.2 MODIFIED DECLINE MODELS5.3 PRODUCTION RATE - CUMULATIVE PRODUCTION PLOTS5.4 DERIVATIVE ANALYSIS5.5 TYPE CURVES FROM FIELD DATA5.6 REFERENCES5.7 PRACTICE PROBLEMSCHAPTER 6 MATERIAL BALANCES FOR OIL RESERVOIRS6.1 SOLUTION GAS DRIVE RESERVOIR6.1.1 Above the Bubble Point Line (Undersaturated Oil Reservoir)6.1.2 Below the Bubble Point Line (Saturated Oil Reservoir with Free Gas)6.2 GAS CAP DRIVE RESERVOIR6.3 NATURAL WATER DRIVE (UNDERSATURATED OIL) RESERVOIR6.4 COMBINATION DRIVE RESERVOIRS6.5 REFERENCES6.6 PRACTICE PROBLEMSCHAPTER 7 MATERIAL BALANCES FOR GAS RESERVOIRS7.1 GAS DEPLETION RESERVOIRS7.2 WATER DRIVE RESERVOIRS7.3 CALCULATION OF P FROM P/Z7.4 HIGH PRESSURE GAS RESERVOIRS7.5 REFERENCES7.6 PRACTICE PROBLEMSCHAPTER 8 WATER AQUIFER MODELS8.1 HURST AND VAN EVERDINGEN MODEL8.2 PRESSURE CHANGES AT THE RESERVOIR - AQUIFER BOUNDARY8.3 FETKOVITCH WATER INFLUX THEORY8.4 CARTER-TRACY AQUIFER THEORY8.5 APPLICATION8.5.1 Hurst and van Everdingen Method8.5.2 Fetkovitch Method8.6 REFERENCES8.7 PRACTICE PROBLEMSCHAPTER 9 OIL ANALYTICAL MODELS9.1 SOLUTION-GAS DRIVE RESERVOIRS9.1.1 Schilthuis' Method9.1.2 Tarner's Method9.1.3 Tracy's Method9.1.4 Muskat and Taylor's Method9.1.5 Rate-Time Forecast9.2 WATERFLOODING9.2.1 Oil Displacement by Water9.2.2 Buckley and Leverett Displacement Theory9.4 REFERENCES9.5 PRACTICE PROBLEMSCHAPTER 10 BASIC WELL TEST ANALYSIS10.1 SINGLE-WELL TESTS10.2 MULTI-WELL TEST10.3 PRESSURE BUILDUP THEORY10.3.1 Infinite Reservoir (with line source well)10.3.2 Bounded Cylindrical Reservoir10.3.3 Constant Pressure at the Outer Boundary10.3.4 Semi-Steady State Flow10.4 PRINCIPLE OF SUPERPOSITION10.5 PRESSURE BUILDUP ANALYSIS: SINGLE PHASE FLOW IN INFINITE RESERVOIR10.6 WELLBORE FILLUP10.7 SKIN10.8 PRESSURE BUILDUP ANALYSIS: SINGLE PHASE FLOW IN BOUNDED, CYLINDRICAL RESERVOIR10.9 PRESSURE BUILDUP ANALYSIS: TWO AND THREE PHASE FLOW10.10 PRESSURE BUILDUP ANALYSIS IN GAS WELLS10.11 DRILL STEM TESTS10.12 PRESSURE DRAWDOWN ANALYSIS10.13 MULTIPLE RATE FLOW TEST ANALYSIS10.14 INTERFERENCE TESTS10.15 AL-HUSSAINY, RAMEY, CRAWFORD METHOD FOR GAS WELL TESTING10.15.1 Semi-Steady State Conditions10.16 HIGH GAS FLOWS10.17 PRESSURE ANALYSIS OF INJECTION WELLS10.18 BEHAVIOUR IN NON-SYMMETRICAL DRAINAGE AREAS10.19 WELL TESTING AND RESERVOIR SIMULATION10.20 STATIC GRADIENT TEST10.21 ACOUSTIC WELL SOUNDER10.22 DETERMINATION OF AVERAGE RESERVOIR PRESSURE10.23 REFERENCES10.24 PRACTICE PROBLEMSCHAPTER 11 INTRODUCTION TO THERMAL PROCESSES11.1 EFFECT OF TEMPERATURE ON ROCK-FLUID PROPERTIES11.2 STEAM INJECTION INTO A RESERVOIR: HEATED ZONE GROWTH11.3 CYCLIC STEAM STIMULATION (CSS)11.3.1 Analytical Models of CSS11.4 STEAMFLOODING11.5 STEAM-ASSISTED GRAVITY DRAINAGE (SAGD)11.5.1 Simple Model for SAGD11.5.2 Steam Requirements15.5.3 Steam Trap Control11.6 HOT WATERFLOODING11.6.1 Heating by Hot Water Injection11.7 REFERENCES11.8 PRACTICE PROBLEMSCHAPTER 12 INTRODUCTION TO RESERVOIR SIMULATION12.1 INTRODUCTION12.2 OBJECTIVES OF RESERVOIR SIMULATION12.3 TYPES OF RESERVOIR SIMULATORS12.4 BASIC EQUATIONS OF RESERVOIR SIMULATION12.4.1 Darcy's Law12.4.2 Single-Phase Flow12.4.3 Multi-Phase Flow12.4.4 Mass Transfer12.5 ENERGY BALANCE12.6 FLUIDS IN RESERVOIRS12.7 EQUATIONS AND UNKNOWNS12.8 INPUT DATA12.9 REPRESENTATION OF WELLS12.9.1 The R-Value (or Well Index)12.10 RESULTS AND ANALYSIS OF RESERVOIR SIMULATION OUTPUT12.11 HISTORY MATCHING12.11.1 Target of History Match12.11.2 History-Matching Parameters12.11.3 Sequence of Operations12.12 REFERENCESAPPENDIX A TERMINOLOGYA.1 BRIEF GLOSSARYA.2 UNIT CONVERSIONSA.3 HOW TO READ A WESTERN CANADIAN MAPA.4 ELEVATIONSAPPENDIX B FLUID PROPERTIESB.1 WATERB.1.1 DensityB.1.2 Thermal ConductivityB.1.3 Heat CapacityB.1.4 ViscosityB.2 BRINE SOLUTIONSB.3 STEAMB.3.1 Saturation Pressure and TemperatureB.3.2 Specific VolumeB.3.4 EnthalpiesB.3.5 ViscosityB.4 OILB.4.1 DensityB.4.2 Thermal ConductivityB.4.3 Heat CapacityB.4.4 ViscosityB.5 BITUMENB.5.1 DensityB.5.2 Heat CapacityB.5.3 ViscosityB.6 RESERVOIR ROCKB.6.1 Heat CapacityB.7 OIL SANDSB.7.1 Thermal ConductivityB.8 PETROLEUM GAS5.8.1 Compressibility, z FactorB.8.2 ViscosityB.8.3 Thermal ConductivityB.8.4 Heat CapacityB.9 REFERENCESINDEX