Del 30

Bäcklund and Darboux Transformations

Geometry and Modern Applications in Soliton Theory

Häftad, Engelska, 2002

Av C. Rogers, W. K. Schief, Sydney) Rogers, C. (University of New South Wales, Sydney) Schief, W. K. (University of New South Wales

929 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Finns i fler format (1)


This book describes the remarkable connections that exist between the classical differential geometry of surfaces and modern soliton theory. The authors also explore the extensive body of literature from the nineteenth and early twentieth centuries by such eminent geometers as Bianchi, Darboux, Bäcklund, and Eisenhart on transformations of privileged classes of surfaces which leave key geometric properties unchanged. Prominent amongst these are Bäcklund-Darboux transformations with their remarkable associated nonlinear superposition principles and importance in soliton theory. It is with these transformations and the links they afford between the classical differential geometry of surfaces and the nonlinear equations of soliton theory that the present text is concerned. In this geometric context, solitonic equations arise out of the Gauß-Mainardi-Codazzi equations for various types of surfaces that admit invariance under Bäcklund-Darboux transformations. This text is appropriate for use at a higher undergraduate or graduate level for applied mathematicians or mathematical physics.

Produktinformation

  • Utgivningsdatum2002-06-24
  • Mått153 x 228 x 23 mm
  • Vikt596 g
  • FormatHäftad
  • SpråkEngelska
  • SerieCambridge Texts in Applied Mathematics
  • Antal sidor432
  • FörlagCambridge University Press
  • ISBN9780521012881

Tillhör följande kategorier