Automation Challenges of Socio-technical Systems
Paradoxes and Conflicts
Inbunden, Engelska, 2019
Av Frederic Vanderhaegen, Frederic Vanderhaegen, Choubeila Maaoui, Mohamed Sallak, Denis Berdjag
2 329 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.The challenges of automating socio-technical systems are strongly linked to the strengths and limitations of technical and human resources, such as perceptual characteristics, cooperative capacities, job-sharing arrangements, modeling of human behavior and the contribution of innovative design approaches. Automation Challenges of Socio-technical Systems exposes the difficulties in implementing and sustaining symbiosis between humans and machines in both the short and long terms. Furthermore, it presents innovative solutions for achieving such symbiosis, drawing on skills from cognitive sciences, engineering sciences and the social sciences. It is aimed at researchers, academics and engineers in these fields.
Produktinformation
- Utgivningsdatum2019-07-05
- Mått163 x 239 x 25 mm
- Vikt680 g
- FormatInbunden
- SpråkEngelska
- Antal sidor360
- FörlagISTE Ltd and John Wiley & Sons Inc
- ISBN9781786304223
Tillhör följande kategorier
Frédéric Vanderhaegen is a Professor at Université Polytechnique Hauts-de-France, and a researcher of the LAMIH laboratory.Choubeila Maaoui is a Professor at the University of Lorraine, France, and a member of the LCOMS laboratory and IFRATH.Mohamed Sallak is a senior lecturer at the Compiègne University of Technology, France and a member of the Heudiasyc laboratory.Denis Berdjag is a senior lecturer at Université Polytechnique Hauts-de-France, and a researcher of the LAMIH laboratory.
- Introduction xiFrédéric VANDERHAEGEN, Choubeila MAAOUI, Mohamed SALLAK and Denis BERDJAGPart 1. Perceptual Capacities 1Chapter 1. Synchronization of Stimuli with Heart Rate: a New Challenge to Control Attentional Dissonances 3Frédéric VANDERHAEGEN, Marion WOLFF and Régis MOLLARD1.1. Introduction 31.2. From human error to dissonance 41.3. Cognitive conflict, attention and attentional dissonance 71.4. Causes and evaluation of attentional dissonance 91.5. Exploratory study of attentional dissonances 111.6. Results of the exploratory study 141.7. Conclusion 221.8. References 24Chapter 2. System-centered Specification of Physico–physiological Interactions of Sensory Perception 29Jean-Marc DUPONT, Frédérique MAYER, Fabien BOUFFARON, Romain LIEBER and Gérard MOREL2.1. Introduction 292.2. Situation-system-centered specification of a sensory perception interaction 312.2.1. Multidisciplinary knowledge elements in systems engineering 322.2.2. Interdisciplinary knowledge elements in systems engineering 382.2.3. Specification of a situation system of interest 442.3. Physiology-centered specification of a sensory perception interaction 512.3.1. Multidisciplinary knowledge elements of a physico–physiological interaction 522.3.2. Prescriptive specification of the targeted interaction of auditory perception 572.4. System-centered specification of an interaction of sensory perception 612.4.1. System-centered architecting specification of the targeted auditory interaction 612.4.2. Sensing-centered specification of the targeted auditory interaction 652.4.3. System-centered sensing specification of the targeted auditory interaction 672.5. Conclusion 722.6. References 74Part 2. Cooperation and Sharing of Tasks 81Chapter 3. A Framework for Analysis of Shared Authority in Complex Socio-technical Systems 83Cédric BACH and Sonja BIEDE3.1. Introduction 833.2. From the systematic approach to the systemic approach: a different approach of sharing authority and responsibility 863.3. A framework of analysis and design of authority and responsibility 883.3.1. Actions in a perspective of authority, responsibility and accountability 893.3.2. Levels of authority and responsibility 923.3.3. Patterns of actions in relation to authority and responsibility 963.3.4. Dynamic relations between the dimensions of the analysis framework 1033.4. Management of wake turbulence in visual separation: a study of preliminary cases 1043.4.1. At the nano level 1063.4.2. At the micro level 1063.4.3. At the meso level 1073.4.4. At the macro level 1073.5. Conclusion 1083.6. References 108Chapter 4. The Design of an Interface According to Principles of Transparency 111Raïssa POKAM MEGUIA, Serge DEBERNARD, Christine CHAUVIN and Sabine LANGLOIS4.1. Introduction 1114.2. State of the art 1134.2.1. Situational awareness 1134.2.2. Transparency 1144.3. Design of a transparent HCI for autonomous vehicles 1184.3.1. Presentation of the approach 1184.3.2. Definition of the principles of transparency 1194.3.3. Cognitive work analysis 1254.4. Experimental protocol 1324.4.1. Interfaces 1324.4.2. Hypotheses 1344.4.3. Participants 1344.4.4. Equipment 1354.4.5. Driving scenarios 1364.4.6. Measured variables 1384.4.7. Statistical approach 1394.5. Results and discussions 1404.5.1. Situational awareness 1404.5.2. Satisfaction of the participants 1434.6. Conclusion 1454.7. Acknowledgments 1464.8. References 146Part 3. System Reliability 151Chapter 5. Exteroceptive Fault-tolerant Control for Autonomous and Safe Driving 153Mohamed Riad BOUKHARI, Ahmed CHAIBET, Moussa BOUKHNIFER and Sébastien GLASER5.1. Introduction 1535.2. Formulation of the problem 1575.3. Fault-tolerant control architecture 1585.3.1. Vehicle dynamics modeling 1595.4. Voting algorithms 1625.4.1. Maximum likelihood voting (MLV) 1625.4.2. Weighted averages (WA) 1635.4.3. History-based weighted average (HBWA) 1645.5. Simulation results 1675.6. Conclusion 1755.7. References 176Chapter 6. A Graphical Model Based on Performance Shaping Factors for a Better Assessment of Human Reliability 179Subeer RANGRA, Mohamed SALLAK, Walter SCHÖN and Frédéric VANDERHAEGEN6.1. Introduction 1796.2. PRELUDE methodology 1866.2.1. Theoretical framework 1886.2.2. The qualitative part 1936.2.3. The quantitative part 1986.2.4. Quantification and sensitivity analysis 2056.3. Case study 2096.3.1. Step 1, qualitative part: HFE and PSF identification 2116.3.2. Step 2, quantitative part: expert elicitation, data combination and transformation 2136.3.3. Step 3, quantification data and results 2166.4. Conclusion 2216.5. Acknowledgments 2246.6. References 224Part 4. System Modeling and Decision Support 231Chapter 7. Fuzzy Decision Support Model for the Control and Regulation of Transport Systems 233Saïd HAYAT and Saïd Moh AHMAED7.1. Introduction 2337.2. The problem of decision support systems in urban collective transport 2347.3. Montbéliard’s transport network 2357.3.1. Connections 2367.3.2. The regulation of an urban collective transport network 2377.4. Fuzzy aid decision-making model for the regulation of public transport 2397.4.1. Knowledge acquisition 2407.4.2. Decision criteria for the regulation of public transport traffic 2427.4.3. Criteria modeling 2437.4.4. The fuzzification process 2447.4.5. Generation of decisions 2477.4.6. Defuzzification 2497.4.7. Types of decisions 2557.4.8. Suggestions of regulatory strategies 2587.4.9. Impact and validation of regulatory strategies 2587.4.10. Implementation of regulatory strategies 2587.5. Conclusion 2597.6. References 259Chapter 8. The Impact of Human Stability on Human–Machine Systems: the Case of the Rail Transport 261Denis BERDJAG and Frédéric VANDERHAEGEN8.1. Introduction 2618.2. Stability and associated notions 2628.2.1. Resilience 2638.2.2. Stability within the technological context 2638.2.3. Mathematical definition of stability in the sense of Lyapunov 2648.2.4. Lyapunov’s theorem 2658.3. Stability in the human context 2658.3.1. Definition of human stability 2658.3.2. Definition of the potential of action and reaction 2678.4. Stabilizability 2678.5. Stability within the context of HMS 2688.6. Structure of the HMS in the railway context 2698.6.1. General structure 2698.6.2. The supervision module 2718.6.3. The technological system model 2718.6.4. The human operator model 2728.7. Illustrative example 2738.7.1. Experimental protocol 2738.7.2. Experimental results 2798.7.3. Remarks and discussion 2808.8. Conclusion 2818.9. References 282Part 5. Innovative Design 285Chapter 9. Development of an Intelligent Garment for Crisis Management: Fire Control Application 287Guillaume TARTARE, Marie-Pierre PACAUX-LEMOINE, Ludovic KOEHL and Xianyi ZENG9.1. Introduction 2879.2. Design of an intelligent garment for firefighters 2909.2.1. Wearable system architecture 2909.2.2. Choice of electronic components 2929.2.3. Textile design and sensor integration 2929.3. Physiological signal processing 2949.3.1. Extraction of respiratory waveforms 2949.3.2. Automatic heart rate detection 2959.3.3. Heart rate variability 2979.3.4. Analysis of experimental results 2979.4. Firefighter–robot cooperation, using intelligent clothing 2999.4.1. Robots 3019.4.2. Human supervisor interface 3029.5. Conclusion 3039.6. References 304Chapter 10. Active Pedagogy for Innovation in Transport 307Frédéric VANDERHAEGEN10.1. Introduction 30710.2. Analysis of a railway accident and system design 30810.3. Analysis of use of a cruise control system 31110.4. Simulation of a collision avoidance system use 31410.5. Eco-driving assistance 31610.6. Towards support for the innovative design of transport systems 31910.7. Conclusion 32110.8. References 322Conclusion 327Frédéric VANDERHAEGEN, Choubeila MAAOUI, Mohamed SALLAK and Denis BERDJAGList of Authors 329Index 333