Atomically Precise Nanochemistry
Inbunden, Engelska, 2023
Av Rongchao Jin, De-en Jiang, USA) Jin, Rongchao (Carnegie Mellon University, USA) Jiang, De-en (Vanderbilt University, De-En Jiang
2 929 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Atomically Precise Nanochemistry Explore recent progress and developments in atomically precise nanochemistry Chemists have long been motivated to create atomically precise nanoclusters, not only for addressing some fundamental issues that were not possible to tackle with imprecise nanoparticles, but also to provide new opportunities for applications such as catalysis, optics, and biomedicine. In Atomically Precise Nanochemistry, a team of distinguished researchers delivers a state-of-the-art reference for researchers and industry professionals working in the fields of nanoscience and cluster science, in disciplines ranging from chemistry to physics, biology, materials science, and engineering. A variety of different nanoclusters are covered, including metal nanoclusters, semiconductor nanoclusters, metal-oxo systems, large-sized organometallic nano-architectures, carbon clusters, and supramolecular architectures. The book contains not only experimental contributions, but also theoretical insights into the atomic and electronic structures, as well as the catalytic mechanisms. The authors explore synthesis, structure, geometry, bonding, and applications of each type of nanocluster. Perfect for researchers working in nanoscience, nanotechnology, and materials chemistry, Atomically Precise Nanochemistry will also benefit industry professionals in these sectors seeking a practical and up-to-date resource.
Produktinformation
- Utgivningsdatum2023-04-27
- Mått170 x 244 x 30 mm
- Vikt1 191 g
- FormatInbunden
- SpråkEngelska
- Antal sidor528
- FörlagJohn Wiley & Sons Inc
- ISBN9781119788645
Tillhör följande kategorier
Rongchao Jin is a leading expert in experimental work on atomically precise nanochemistry working in the Department of Chemistry at Carnegie Mellon University in the United States. De-en Jiang is a leading theorist on atomically precise nanochemistry working in the Chemical and Biomolecular Engineering Department at Vanderbilt University in the United States.
- List of Contributors xiiiPreface xvii1 Introduction to Atomically Precise Nanochemistry 1Rongchao Jin1.1 Why Atomically Precise Nanochemistry? 11.1.1 Motivations from Nanoscience Research 11.1.2 Motivations from Inorganic Chemistry Research 51.1.3 Motivations from Gas Phase Cluster Research 61.1.4 Motivations from Other Areas 61.2 Types of Nanoclusters Covered in This Book 71.2.1 Atomically Precise Metal Nanoclusters (Au, Ag, Cu, Ni, Rh) 81.2.2 Endohedral Fullerenes and Graphene Nanoribbons 101.2.3 Zintl Clusters 101.2.4 Metal- Oxo Nanoclusters 111.3 Some Fundamental Aspects 121.3.1 Synthesis and Crystallization 121.3.2 Structural and Bonding Patterns 161.3.3 Transition from Nonmetallic to Metallic State: Emergence of Plasmon 251.3.4 Transition from Metal Complexes to the Cluster State: Emergence of Core 291.3.5 Doping and Alloying 321.3.6 Redox and Magnetism 331.3.7 Energy Gap Engineering 391.3.8 Assembly of Atomically Precise Nanoclusters 401.4 Some Applications 421.4.1 Chemical and Biological Sensing 431.4.2 Biomedical Imaging, Drug Delivery, and Therapy 441.4.3 Antibacteria 451.4.4 Solar Energy Conversion 451.4.5 Catalysis 451.5 Concluding Remarks 49Acknowledgment 49References 492 Total Synthesis of Thiolate- Protected Noble Metal Nanoclusters 57Qiaofeng Yao, Yitao Cao, Tiankai Chen, and Jianping Xie2.1 Introduction 572.2 Size Engineering of Metal Nanoclusters 582.2.1 Size Engineering by Reduction- Growth Strategy 582.2.2 Size Engineering by Size Conversion Strategy 622.3 Composition Engineering of Metal Nanoclusters 642.3.1 Metal Composition Engineering 642.3.2 Ligand Composition Engineering 702.4 Structure Engineering of Metal Nanoclusters 732.4.1 Pseudo- Isomerization 752.4.2 Isomerization 752.5 Top- Down Etching Reaction of Metal Nanoclusters 782.6 Conclusion and Outlooks 80Contributions 83References 833 Thiolated Gold Nanoclusters with Well- Defined Compositions and Structures 87Wanmiao Gu and Zhikun Wu3.1 Introduction 873.2 Synthesis, Purification, and Characterization of Gold Nanoclusters 883.2.1 Synthesis 883.2.1.1 Synthesis Strategy 893.2.1.2 Gold Salt (Complex) Reduction Method 893.2.1.3 Ligand Induction Method 913.2.1.4 Anti- Galvanic Reaction Method 913.2.2 Isolation and Purification 923.2.3 Characterization 943.3 Structures of Gold Nanoclusters 953.3.1 Kernel Structures of Au n (SR) m 963.3.2 Kernels Based on Tetrahedral Au 4 Units 963.3.2.1 Kernels in fcc Structure 993.3.2.2 Kernels Arranged in hcp and bcc Fashions 993.3.2.3 Kernels in Mirror Symmetry and Dual- Packing (fcc and non- fcc) 1013.3.2.4 Kernels Based on Icosahedral Au 13 Unit 1023.3.2.5 Kernels with Multiple Shells 1053.3.3 Protecting Surface Motifs of Au n (SR) m Clusters 1113.3.3.1 Staple- Like Au X (sr) X+1 (x = 1, 2, 3, 4, 8) Motifs 1113.3.3.2 Ring- Like Au X (sr) X (x = 4, 5, 6, 8) Motifs 1113.3.3.3 Giant Au 20 S 3 (SR) 18 and Au 23 S 4 (SR) 18 Staple Motifs 1123.3.3.4 Homo- Kernel Hetero- Staples 1123.4 Properties and Applications 1153.4.1 Properties 1153.4.1.1 Optical Absorption 1163.4.1.2 Photoluminescence 1193.4.1.3 Chirality 1233.4.1.4 Magnetism 1243.4.2 Applications 1253.4.2.1 Sensing 1253.4.2.2 Biological Labeling and Biomedicine 1273.4.2.3 Catalysis 1273.5 Conclusion and Future Perspectives 130Acknowledgments 131References 1314 Structural Design of Thiolate- Protected Gold Nanoclusters 141Pengye Liu, Wenhua Han, and Wen Wu Xu4.1 Introduction 1414.2 Structural Design Based on “Divide and Protect” Rule 1424.2.1 A Brief Introduction of the Idea 1424.2.2 Atomic Structure of Au 68 (SH) 32 1424.2.3 Atomic Structure of Au 68 (SH) 34 1424.3 Structural Design via Redistributing the “Staple” Motifs on the Known Au Core Structures 1444.3.1 A Brief Introduction of the Idea 1444.3.2− Atomic Structure of Au 22 (SH) 17 1454.3.3 Atomic Structures of Au 27 (SH) − 20 , Au 32 (SR) − 21 , Au 34 (SR) − 23 , and Au 36 (SR) 25 − 1464.4 Structural Design via Structural Evolution 1494.4.1 A Brief Introduction of the Idea 1494.4.2 Atomic Structures of Au 60 (SR) 36 , Au 68 (SR) 40 , and Au 76 (SR) 44 1504.4.3 Atomic Structure of Au 58 (SR) 30 1524.5 Structural Design via Grand Unified Model 1534.5.1 A Brief Introduction of the Idea 1534.5.2 Atomic Structures of Hollow Au 36 (SR) 12 and Au 42 (SR) 14 1544.5.3 Atomic Structures of Au 28 (SR) 20 1554.6 Conclusion and Perspectives 155Acknowledgment 156References 1565 Electrocatalysis on Atomically Precise Metal Nanoclusters 161Hoeun Seong, Woojun Choi, Yongsung Jo, and Dongil Lee5.1 Introduction 1615.1.1 Materials Design Strategy for Electrocatalysis 1615.1.2 Atomically Precise Metal Nanoclusters as Electrocatalysts 1635.2 Electrochemistry of Atomically Precise Metal Nanoclusters 1645.2.1 Size- Dependent Voltammetry 1645.2.2 Metal- Doped Gold Nanoclusters 1665.2.3 Metal- Doped Silver Nanoclusters 1695.3 Electrocatalytic Water Splitting on Atomically Precise Metal Nanoclusters 1705.3.1 Hydrogen Evolution Reaction: Core Engineering 1705.3.2 Hydrogen Evolution Reaction: Shell Engineering 1725.3.3 Hydrogen Evolution Reaction on Ag Nanoclusters 1735.3.4 Oxygen Evolution Reaction 1765.4 Electrocatalytic Conversion of CO 2 on Atomically Precise Metal Nanoclusters 1785.4.1 Mechanistic Investigation of CO 2 RR on Au Nanoclusters 1795.4.2 Identification of CO 2 RR Active Sites 1815.4.3 CO 2 RR on Cu Nanoclusters 1835.4.4 Syngas Production on Formulated Metal Nanoclusters 1855.5 Conclusions and Outlook 187Acknowledgments 188References 1886 Atomically Precise Metal Nanoclusters as Electrocatalysts: From Experiment to Computational Insights 195Fang Sun, Qing Tang, and De- en Jiang6.1 Introduction 1956.2 Factors Affecting the Activity and Selectivity of NCs Electrocatalysis 1966.2.1 Size Effect 1966.2.2 Shape Effect 1986.2.3 Ligands Effect 1996.2.3.1 Different –R Groups in Thiolate Ligands 1996.2.3.2 Different Types of Ligands 1996.2.3.3 Ligand- on and - off Effect 2006.2.4 Charge State Effect 2016.2.5 Doping and Alloying Effect 2026.3 Important Electrocatalytic Applications 2056.3.1 Electrocatalytic Water Splitting 2056.3.1.1 Water Electrolysis Process 2056.3.1.2 Cathodic Water Reduction–HER 2066.3.1.3 Anodic Water Oxidation–OER 2086.3.2 Oxygen Reduction Reaction (ORR) 2106.3.3 Electrochemical CO 2 Reduction Reaction (CO 2 RR) 2136.4 Conclusion and Perspectives 219Acknowledgments 220References 2207 Ag Nanoclusters: Synthesis, Structure, and Properties 227Manman Zhou and Manzhou Zhu7.1 Introduction 2277.2 Synthetic Methods 2287.2.1 One- Pot Synthesis 2287.2.2 Ligand Exchange 2287.2.3 Chemical Etching 2297.2.4 Seeded Growth Method 2297.3 Structure of Ag NCs 2297.3.1 Based on Icosahedral Units’ Assembly 2317.3.2 Based on Ag 14 Units’ Assembly 2357.3.3 Other Special Ag NCs 2417.4 Properties of Ag NCs 2457.4.1 Chirality of Ag NCs 2457.4.2 Photoluminescence of Ag NCs 2477.4.3 Catalytic Properties of Ag NCs 2507.5 Conclusion and Perspectives 250Acknowledgment 251References 2518 Atomically Precise Copper Nanoclusters: Syntheses, Structures, and Properties 257Chunwei Dong, Saidkhodzha Nematulloev, Peng Yuan, and Osman M. Bakr8.1 Introduction 2578.2 Syntheses of Copper NCs 2588.2.1 Direct Synthesis 2588.2.2 Indirect Synthesis: Nanocluster- to- Nanocluster Transformation 2608.3 Structures of Copper NCs 2618.3.1 Superatom- like Copper NCs without Hydrides 2618.3.2 Superatom- like Copper NCs with Hydrides 2638.3.3 Copper(I) Hydride NCs 2658.3.3.1 Determination of Hydrides 2658.3.3.2 Copper(I) Hydride NCs Determined by Single- Crystal Neutron Diffraction 2658.3.3.3 Copper(I) Hydride NCs Determined by Single- Crystal X- ray Diffraction 2688.4 Properties 2708.4.1 Photoluminescence of Copper NCs 2708.4.1.1 Aggregation- Induced Emission 2718.4.1.2 Circularly Polarized Luminescence (CPL) 2738.4.2 Catalytic Properties of Copper NCs 2738.4.2.1 Reduction of CO 2 2738.4.2.2 “Click” Reaction 2768.4.2.3 Hydrogenation 2768.4.2.4 Carbonylation Reactions 2768.4.3 Other Properties 2768.4.3.1 Hydrogen Storage 2768.4.3.2 Electronic Devices 2778.5 Summary Comparison with Gold and Silver NCs 2778.6 Conclusion and Perspectives 278References 2799 Atomically Precise Nanoclusters of Iron, Cobalt, and Nickel: Why Are They So Rare? 285Trevor W. Hayton9.1 Introduction 2859.2 General Considerations 2879.3 Synthesis of Ni APNCs 2889.4 Synthesis of Co APNCs 2949.5 Attempted Synthesis of Fe APNCs 2979.6 Conclusions and Outlook 299Acknowledgments 300References 30010 Atomically Precise Heterometallic Rhodium Nanoclusters Stabilized by Carbonyl Ligands 309Guido Bussoli, Cristiana Cesari, Cristina Femoni, Maria C. Iapalucci, Silvia Ruggieri, and Stefano Zacchini10.1 Introduction 30910.1.1 Metal Carbonyl Clusters: A Brief Historical Overview 30910.1.2 State of the Art on Rhodium Carbonyl Clusters 31010.2 Synthesis of Heterometallic Rhodium Carbonyl Nanoclusters 31110.2.1 Synthesis of the [Rh12 E(CO)27 ] n− Family of Nanoclusters 31110.2.2 Growth of Rhodium Heterometallic Nanoclusters 31410.2.2.1 Rh─Ge Nanoclusters 31410.2.2.2 Rh─Sn Nanoclusters 31610.2.2.3 Rh─Sb Nanoclusters 31610.2.2.4 Rh─Bi Nanoclusters 31910.3 Electron- Reservoir Behavior of Heterometallic Rhodium Nanoclusters 31910.4 Conclusions and Perspectives 322Acknowledgments 324References 32411 Endohedral Fullerenes: Atomically Precise Doping Inside Nano Carbon Cages 331Yang- Rong Yao, Jiawei Qiu, Lihao Zheng, Hongjie Jiang, Yunpeng Xia, and Ning Chen11.1 Introduction 33111.2 Synthesis of Endohedral Metallofullerenes 33211.3 Fullerene Structures Tuned by Endohedral Doping 33411.3.1 Geometry of Empty and Endohedral Fullerene Cage Structures 33411.3.2 Conventional Endohedral Metallofullerenes 33611.3.2.1 Mono- Metallofullerens 33611.3.2.2 Di- Metallofullerenes 33711.3.3 Clusterfullerenes 33911.3.3.1 Nitride Clusterfullerenes 33911.3.3.2 Carbide Clusterfullerenes 33911.3.3.3 Oxide and Sulfide Clusterfullerenes 34111.3.3.4 Carbonitride and Cyanide Clusterfullerenes 34111.4 Properties Tuned by Endohedral Doping 34211.4.1 Spectroscopic Properties 34211.4.1.1 NMR Spectroscopy 34311.4.1.2 Absorption Spectroscopy 34411.4.1.3 Vibrational Spectroscopy 34711.4.2 Electrochemical Properties 34911.4.2.1 Conventional Endohedral Metallofullerenes 34911.4.2.2 Clusterfullerenes 35111.4.3 Magnetic Properties 35311.4.3.1 Dimetallofullerenes 35311.4.3.2 Clusterfullerenes 35411.5 Chemical Reactivity Tune by Endohedral Doping 35811.5.1 Impact of Endohedral Doping on the Reactivity of Fullerene Cages 35811.5.2 Chemical Reactivity of Endohedral Fullerenes Altered by Atomically Endohedral Doping 36011.6 Conclusions and Perspectives 362References 36212 On- Surface Synthesis of Polyacenes and Narrow Band- Gap Graphene Nanoribbons 373Hironobu Hayashi and Hiroko Yamada12.1 Introduction 37312.1.1 Nanocarbon Materials 37412.1.2 Graphene Nanoribbons 37412.2 Bottom- Up Synthesis of Graphene Nanoribbons 37512.3 On- Surface Synthesis of Narrow Bandgap Armchair- Type Graphene Nanoribbons 37812.4 On- Surface Synthesis of Polyacenes as Partial Structure of Zigzag- Type Graphene Nanoribbons 38212.5 Conclusion and Perspectives 390Acknowledgments 390References 39013 A Branch of Zintl Chemistry: Metal Clusters of Group 15 Elements 395Yu-He Xu, Nikolay V. Tkachenko, Alvaro Muñoz-Castro, Alexander I. Boldyrev, and Zhong- Ming Sun13.1 Introduction 39513.1.1 Homoatomic Group 15 Clusters 39513.1.2 Bonding Concepts 39613.1.3 Aromaticity in Zintl Chemistry 39713.2 Complex Coordination Modes in Arsenic Clusters 39913.3 Antimony Clusters with Aromaticity and Anti- Aromaticity 40113.4 Recent Advances in Bismuth- Containing Compounds 40813.5 Ternary Clusters Containing Group 15 Elements 41113.6 Conclusion and Perspectives 414References 41514 Exploration of Controllable Synthesis and Structural Diversity of Titanium─Oxo Clusters 423Mei- Yan Gao, Lei Zhang, and Jian Zhang14.1 Introduction 42314.2 Coordination Delayed Hydrolysis Strategy 42514.2.1 Solvothermal Synthesis 42614.2.2 Aqueous Sol- Gel Synthesis 42614.2.3 Ionothermal Synthesis 42714.2.4 Solid- State- Like Synthesis 42714.3 Ti─O Core Diversity 42714.3.1 Dense Structures 43114.3.2 Wheel- Shaped Structures 43114.3.3 Sphere- Shaped Structures 43114.3.4 Multicluster Structures 43214.4 Ligand Diversity 43214.4.1 Carboxylate Ligands 43314.4.2 Phosphonate Ligands 43314.4.3 Polyphenolic Ligands 43514.4.4 Sulfate Ligands 43614.4.5 Nitrogen Heterocyclic Ligands 43714.5 Metal- Doping Diversity 43814.5.1 Transition Metal Doping 43914.5.2 Rare Earth Metal Doping 44014.6 Structural Influence on Properties and Applications 44114.7 Conclusion and Perspectives 445Acknowledgment 446References 44615 Atom- Precise Cluster- Assembled Materials: Requirement and Progresses 453Sourav Biswas, Panpan Sun, Xia Xin, Sukhendu Mandal, and Di Sun15.1 Introduction 45315.2 Prospect of Cluster- Assembling Process and Their Classification 45415.2.1 Nanocluster Assembly in Crystal Lattice through Surface Ligand Interaction 45515.2.2 Nanocluster Assembly through Metal–Metal Bonds 45615.2.3 Nanocluster Assembly through Linkers 46115.2.3.1 One- Dimensional Nanocluster Assembly 46315.2.3.2 Two- Dimensional Nanocluster Assembly 46515.2.3.3 Three- Dimensional Nanocluster Assembly 46915.2.4 Nanocluster Assembly through Aggregation 47015.3 Conclusions and Outlook 474Notes 474Acknowledgments 475References 47516 Coinage Metal Cluster- Assembled Materials 479Zhao- Yang Wang and Shuang- Quan Zang16.1 Introduction 47916.2 Structures of Metal Cluster- Assembled Materials 48016.2.1 Silver Cluster- Assembled Materials (SCAMs) 48016.2.1.1 Simple Ion Linker 48016.2.1.2 POMs Linker 48216.2.1.3 Organic Linker 48216.2.2 Gold Cluster- Assembled Materials (GCAMs) 49116.2.3 Copper Cluster- Assembled Materials (CCAMs) 49216.3 Applications 49316.3.1 Ratiometric Luminescent Temperature Sensing 49416.3.2 Luminescent Sensing and Identifying O2 and VOCs 49516.3.3 Catalytic Properties 49516.3.4 Anti- Superbacteria 49816.4 Conclusion 499Acknowledgments 499References 499Index 503