Del 8 - Series on Concrete & Applicable Mathematics
Approximation By Complex Bernstein And Convolution Type Operators
Inbunden, Engelska, 2009
Av Sorin G Gal, Romania) Gal, Sorin G (Univ Of Oradea, Sorin G. Gal, GAL SORIN G
2 409 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.The monograph, as its first main goal, aims to study the overconvergence phenomenon of important classes of Bernstein-type operators of one or several complex variables, that is, to extend their quantitative convergence properties to larger sets in the complex plane rather than the real intervals. The operators studied are of the following types: Bernstein, Bernstein—Faber, Bernstein-Butzer, q-Bernstein, Bernstein-Stancu, Bernstein-Kantorovich, Favard-Szász-Mirakjan, Baskakov and Balázs-Szabados.The second main objective is to provide a study of the approximation and geometric properties of several types of complex convolutions: the de la Vallée Poussin, Fejér, Riesz-Zygmund, Jackson, Rogosinski, Picard, Poisson-Cauchy, Gauss-Weierstrass, q-Picard, q-Gauss-Weierstrass, Post-Widder, rotation-invariant, Sikkema and nonlinear. Several applications to partial differential equations (PDEs) are also presented.Many of the open problems encountered in the studies are proposed at the end of each chapter. For further research, the monograph suggests and advocates similar studies for other complex Bernstein-type operators, and for other linear and nonlinear convolutions.
Produktinformation
- Utgivningsdatum2009-08-12
- Mått174 x 256 x 24 mm
- Vikt740 g
- FormatInbunden
- SpråkEngelska
- SerieSeries on Concrete & Applicable Mathematics
- Antal sidor352
- FörlagWorld Scientific Publishing Co Pte Ltd
- ISBN9789814282420