Del 17

Algorithmic Methods in Non-Commutative Algebra

Applications to Quantum Groups

Häftad, Engelska, 2010

Av J.L. Bueso, José Gómez-Torrecillas, A. Verschoren, J. L. Bueso, A. Gómez-Torrecillas, José

719 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Finns i fler format (1)


The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc.

Produktinformation

  • Utgivningsdatum2010-12-08
  • Mått155 x 235 x 18 mm
  • Vikt482 g
  • FormatHäftad
  • SpråkEngelska
  • SerieMathematical Modelling: Theory and Applications
  • Antal sidor300
  • FörlagSpringer
  • ISBN9789048163281