bokomslag Algorithmic High-Dimensional Robust Statistics
Data & IT

Algorithmic High-Dimensional Robust Statistics

Ilias Diakonikolas Daniel M Kane Daniel M Kane

Inbunden

909:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 2-7 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Denna produkt går inte att reservera, köp den gärna online!

  • 2023
Robust statistics is the study of designing estimators that perform well even when the dataset significantly deviates from the idealized modeling assumptions, such as in the presence of model misspecification or adversarial outliers in the dataset. The classical statistical theory, dating back to pioneering works by Tukey and Huber, characterizes the information-theoretic limits of robust estimation for most common problems. A recent line of work in computer science gave the first computationally efficient robust estimators in high dimensions for a range of learning tasks. This reference text for graduate students, researchers, and professionals in machine learning theory, provides an overview of recent developments in algorithmic high-dimensional robust statistics, presenting the underlying ideas in a clear and unified manner, while leveraging new perspectives on the developed techniques to provide streamlined proofs of these results. The most basic and illustrative results are analyzed in each chapter, while more tangential developments are explored in the exercises.
  • Författare: Ilias Diakonikolas, Daniel M Kane, Daniel M Kane
  • Format: Inbunden
  • ISBN: 9781108837811
  • Språk: Engelska
  • Utgivningsdatum: 2023-09-07
  • Förlag: Cambridge University Press